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PREFACE

IN preparing this little text the author has followed the general

plan adopted in his plane trigonometry. Whatever unusual merit

the book possesses must be sought for largely in the following points:

1. Superfluous figures in the answers to problems are suppressed

on the ground that the current practice of giving answers to a degree

of accuracy not warranted by the data is detrimental- in its influence

on the student.

2. The first exercises under each case of triangles have the parts

given to the nearest minute only. This is done to relieve the student

of the task of interpolation until he has acquired some familiarity with

his formulas. After that the parts are given to the nearest tenth of a

minute and then follow exercises in which the data are expressed to

the nearest second.

3. It is believed that a proof of Napier's Rules of Circular Parts

appears here for the first time in an elementary textbook.

4. Alternate proofs are given or suggested for all fundamental

theorems.

5. The three fundamental relations of the parts of oblique spherical

triangles are proven simultaneously by the principles of analytical

geometry enabling classes which have some familiarity with analyt-

ical geometry to cover the present subject in a minimum of time.

6. More complete lists of applied problems will be found than is

customary in the current texts.

The author wishes to acknowledge his indebtedness to his colleague,

Professor S. L. Boothroyd, Associate Professor of Astronomy, who

has prepared the list of problems from astronomy and has read the

entire manuscript.

All references to plane trigonometry are to the author's "Elements

of Plane Trigonometry," Wiley and Sons, New York.

ROBERT E. MORITZ.
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SPHERICAL TRIGONOMETRY

CHAPTER I

INTRODUCTION

1. Definition of Spherical Trigonometry. If three points on any
surface are joined by the shortest lines lying in the surface that it

is possible to draw between these points a triangle is formed. Every
such triangle has six parts, three sides and three angles. In general

the sides are not straight lines but geodesic lines, that is, the shortest

lines that can be drawn on the surface connecting the points. Thus

every class of surfaces gives rise to a special trigonometry whose

object is the investigation of the relations between the parts of the

triangle and the study of the functions necessary for the determin-

ation of the unknown parts of a triangle from a sufficient number

of given parts.

If the surface under consideration is the plane, the geodesies are

straight lines and the triangles plane triangles, whose properties and

those of the functions necessary for their solution have been consid-

ered in plane trigonometry. If the points lie on the surface of a

sphere the geodesies are arcs of great circles, the triangles are called

spherical triangles, and the corresponding trigonometry, spherical

trigonometry. Briefly stated,

Spherical Trigonometry deals with the relations among the six parts

of a spherical triangle and the problems which may be solved by means

of these relations. The most important of these problems consist in

the computation of the unknown parts of a spherical triangle from

three given parts. It will be found that the solution of spherical

triangles requires no functions other than those employed in plane

trigonometry.

2. The Uses of Spherical Trigonometry. It is obvious that

the triangle formed by three points on the earth's surface is not a

plane triangle but a spherical triangle, for the distances between are

measured not along straight lines but along arcs of great circles. It
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is only when the distances are comparatively small that the sides may
be considered straight lines and that the formulas of plane trigonom-

etry give fairly approximate results. Hence geodetic surveying,

that is surveying on a large scale, requires a knowledge of spherical

trigonometry. The same is true of navigation when the bearings and

distances of distant ports are under consideration. Strictly speaking
since the earth is not a perfect sphere but a spheroid, such problems

require a knowledge of spheroidal trigonometry, a branch of trigonom-

etry whose study demands the introduction of functions other than

those considered in plane trigonometry, but for many purposes the laws

of spherical trigonometry give sufficiently accurate approximations.

While a knowledge of spherical trigonometry is of great importance
to the surveyor and navigator, it is of even greater importance to the

astronomer. The positions of all heavenly bodies are referred to the

surface of an imaginary sphere, the celestial sphere, which encloses

them all. In fact it is the dependance of astronomy upon spherical

trigonometry that first led to its study by the ancients, long before

plane trigonometry was thought of as a separate branch of science.

Spherical trigonometry is, as it were, the elder sister of plane trig-

onometry.
Besides the uses already mentioned, spherical trigonometry fur-

nishes the best possible review and constitutes one of the most inter-

esting applications of the principles of plane trigonometry. Spherical

trigonometry embodies the results of plane trigonometry in much the

same measure that solid geometry embodies the results of plane

geometry.

Finally, spherical trigonometry is worthy of study for its own sake

because of the marvellous relations which it reveals and the sim-

plicity, elegance, and beauty of the formulas in which its results are

embodied.

3. Spherical Trigonometry Dependent on Solid Geometry.

Just as plane trigonometry presupposes a certain knowledge of plane

geometry so spherical trigonometry requires an acquaintance with

solid geometry, especially with that portion of it which deals with the

sphere. The student should, therefore, have a textbook on solid

geometry ready at hand while pursuing this study in order to familiar-

ize himself anew with the theorems and definitions which are pre-

supposed in the discussions which follow. He should also provide

himself with a small wooden or plaster of pans sphere and construct
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his figures on it whenever he has difficulty in visualizing the figures

called for in his study.

4. Classification of Spherical Triangles. Like plane triangles,

spherical triangles are classified in two ways: first, with reference to

the sides and second, with reference to the angles.

A spherical triangle is said to be equilateral, isosceles, or scalene,

according as it has three, two, or no equal sides. Since each side of a

Fig. i.

spherical triangle may have any value less than 180,* one, two, or

all three of the sides may be quadrants. If one side is a quadrant,

the triangle is called quadrantal, if two, biquadrantal, if all three,

triquadrantaL

A right spherical triangle is one which has a right angle; an oblique

spherical triangle is one which has none of its angles a right angle.

Fig. 3-

Oblique spherical triangles are obtuse or acute according as they have

or have not an obtuse angle. Since the sum of the angles of a spherical

* By the number of degrees in an arc we mean, of course, the number of degrees

in the angle which the arc subtends at the center of the sphere. The number of

degrees in an arc being given, the length of the arc is at once found from the relation,

s rOj where r is the radius of the sphere and the radian measure of the angle.

(See PL Trig., Art. 90.)
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triangle may have any value between 180 and 540 and no single

angle can exceed 180, a spherical triangle may have two or even

three right angles. If it has two right angles it is called birectangular

(Fig. i), if three, tr{rectangular (Fig. 2). For the same reason a spheri-

cal triangle may have two or even three obtuse angles (Fig. 3).

If two points on a sphere are at the extremities of the same diam-

eter any great circle passing through one of the points will pass also

through the other. Two such points, therefore, cannot be the

vertices of a spherical triangle, for the great circles connecting these

points with any third point will coincide and the resulting figure will

not be a triangle but a lune (Fig. 4).

6. Co-lunar Triangles. If the arcs AB, AC (Fig. 5) forming two

sides of any spherical triangle be produced, they will meet again in

some point A', forming a lune. The third side

EC divides this lune into two triangles, the origi-

nal triangle ABC, and the triangle A'BC. The

triangle A'BC thus formed is said to be co-lunar

with the triangle ABC. It is obvious that any

given triangle has three co-lunar triangles, one

corresponding to each angle of the triangle. Thus

the triangle ABC (Fig. 5) has the three co-lunar

triangles A'BC, AB f

C, ABC, where A', B'
,
C'

are the opposite poles of the vertices A, B, C of the triangle ABC.
Since tHe angles of a lune are equal, and the sides of the lune semi-

circles, it follows that the parts of the co-lunar triangles may be im-

mediately expressed in terms of the parts of the original triangle. If

we denote the sides of the triangle ABC by a, b, c, and the angles by

A, B, C, the corresponding parts of the co-lunar triangles are as follows:

6. Use of Co-lunar Triangles. Any general formula expressing

a relation between the parts of a spherical triangle must continue true

when applied to the co-lunar triangles. We may, therefore, sub-

stitute in any such formula for any two sides and their opposite
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angles their supplements, leaving the third side and angle unchanged.

This process frequently leads to new relations among the parts of the

triangle.

Thus, after it has been shown that for any triangle

a-b C . A+B c
cos cos = sm cos - >22 22

we obtain, by applying this formula to the co-lunar triangle A'BC,

a - (180
- W 180 - C . A + (180

- B) 180 - c
cos i cos = sm L_ L cos ,

,22 22
which reduces to the new formula

. a + b . C A- B . c
sm sm - = cos sin -22 22

EXEKCISE I

1. Show that every birectangular spherical triangle is also bi-

quadrantal, and every trirectangular triangle is also triquadrantal.

2. Prove the converse of the proposition in Problem i.

3. The co-lunar triangles of any right spherical triangle are right

spherical triangles, and the co-lunar triangles of any quadrantal

triangle are quadrantal.

4. The co-lunar triangles of an equilateral spherical triangle are

isosceles.

5. It will be shown later that for any spherical triangle

a + b . C A+B c
cos sin = cos cos22 22

By applying this formula to the co-lunar triangle A'BC show that

.a-b C . A- B . c
sin cos = sin sin--22 22

6. It will be shown later that for any spherical triangle

sin- = . /sin (s
-

a) sin (s b)
^

2 V sin a sin b

, a+b+c
where 5 = ! !

2

By applying this formula to the co-lunar triangle ABC' show that

C /sin s sm (s c
COS- = \ ; v-1 :

2 V sin a sin b
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7. In Fig. 6, ABC is any right spherical triangle, right-angled at i.

With B as a pole construct a great circle cutting CB produced in 2

and BA produced in 3. With A as a pole

construct a great circle cutting AB produced
in 4 and C.I produced in 5. The resulting

figure is a curvilinear pentagon bordered by
five spherical triangles. Show that each of

these triangles is right-angled and determine

all their parts as indicated in the figure. (Re-

mark. The dashes over the letters indicate

complements, thus A 90 .4, a 90 a,

c = 90
- c

, etc.)

7. Polar Triangles. If from the vertices of any spherical triangle

ABC as poles, great circles are drawn they will divide the surface of

the sphere into eight associated spherical triangles one of which is

called the Polar of the triangle ABC, and is determined as follows:

The great circles whose poles are B and C respectively intersect in

two points which lie on opposite sides of the arc BC. Let A '

be that

one of these two points which lies on the same side of EC as A. The

great circles whose poles are C and A respectively intersect in two

Fig. 6.

Fig. 7. Fig 8. Fig. 9.

points which lie on opposite sides of the arc CA. Let B' be that one

of the two points which lies on the same side of CA as B. Similarly,

let C f be that one of the intersection points of the great circles whose

poles are .1 and B, respectively, which lies on the same side of the arc

AB as the vertex C. The triangle whose vertices are A', B', C is the

polar of the triangle ABC.

Just as in triangle ABC we use A, B, C to denote the angles and

a, b, c to denote the sides opposite these angles, so A', B', C' denote

the angles and a', b', c' the sides opposite these angles in the polar
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It is necessary to recall the two fundamental properties of polar

triangles:

I. The relation of a triangle to its polar is mutual, that is, if A'B'C'

is the polar of ABC then ABC is the polar of A'B'C. Since each of

these triangles is the polar of the other, two such triangles are referred

to as polar triangles.

II. In two polar triangles each angle is the supplement of the opposite

side in the other, and each side the supplement of the opposite angle in

the other. In symbols,

A + a'= 180, A' + a = 180,
B + b' = 180, B' + b = 180,

C + c' = 180, r + c = 180.

8. The Six Cases of Spherical Triangles. It will be shown

presently that the six parts of any spherical triangle are so related that

when any three are given the remaining three can be found. The

three given parts may be:

I. The three sides.

II. The three angles.

III. Two sides and the included angle.

IV. Two angles and the included side.

V. Two sides and the angle opposite one of them.

VI. Two angles and the side opposite one of them.

There are six cases of spherical triangles while there are only three

cases of plane triangles. This is because Cases IV and VI above

reduce to the same case for plane triangles, since any two angles of

a triangle determine the third. Also Case II above is ruled out for

plane triangles since the three angles of a plane triangle determine

only the shape but not the magnitude of the triangle.

9. Solution of Spherical Triangles. There are two distinct

methods of finding the unknown parts of a spherical triangle from three

known parts:

I. The Graphic Method. This consists of actually constructing

the triangle on a material sphere. The unknown parts may then be

found by measurement.

II. The Method of Spherical Trigonometry. The unknown parts are

obtained by computation by means of formulas expressing the rela-

tion of the unknown parts to the parts which are given.
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The first method is purely geometrical and is subject to all the

errors of construction and inaccuracies of measurement pointed out

in PL Trig., Art. 3. It is valuable as a rough check on the second

method rather than as an independent method of solution.

The second method gives the unknown parts to a degree of ac-

curacy limited only by the accuracy of the data and the number of

places of the tables employed in the computation. This is the method

employed in Geodesy, in Astronomy, and whenever precision is

necessary or desirable. The derivation of the formulas employed

by the second method and their application to the solution of the six

cases of triangles constitutes an important part of Spherical Trigo-

nometry.
10. The Use of the Polar Triangle. By the use of the polar

triangle the second, fourth, and sixth case of spherical triangles may be

made to depend on the first, third, and fifth respectively. Consider

for instance Case II, in which the three angles are given. From

the relations of Art. 7 the three sides of the polar triangle are

known, this triangle may, therefore, be solved by Case I, and having

found the angles of this triangle, the sides of the original triangle are

given by the relations of Art. 7. Similarly, Case IV may be solved

by Case III, and Case VI by Case V.

Again by means of the polar triangle any known relation between

the parts of a triangle may be made to yield another relation, which

frequently turns out to be new; for a relation which holds for every

triangle must remain true when applied to the polar, that is, it must

hold true if we put for each side the supplement of the opposite

angle and for each angle the supplement of the opposite side. Thus

if in the formula

cos \ (a b) cos \ C = sin ^ (A + B) cos J c

of Art. 6 we put

a =i8o-4', b = i8o-J3',C = i8o-c',

A =i8o-<z', =180 -
b', c=i8o-C",

we obtain

(iSo-A
r

)
- (i8o-g') i8o-V _cos cos
2 2

. (i8o-V)+(i8o-ft') i8o-C"
sin LJ cos >
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sin | (a' + ft') sin | C',

Fig. 10.

which on reducing becomes

cos J U' - B') sin i c'

or dropping accents

cos %(A B)sm%c sin | (a + ft) sin J C.

11. Construction of Spherical Triangles.
Case I. Given the three sides, a, ft, c.

On a sphere lay off an arc EC equal to a.* With B as a pole and

an arc equal to c draw a small circle and with C
as a pole and an arc equal to ft draw another

small circle. Either of the intersection points,

A, A', of these small circles will be the vertex

of a triangle whose other vertices are B and C
and whose sides are the three given parts, 0, ft, c.

Case II. Given the three angles, Aj B, C.

By Case I construct the polar triangle whose

sides are

0=180 -4, ft =180 -5, c=i8o-C.
The polar of this triangle will be the required triangle.

Case III. Given two sides and the included angle, a, b, C.

On a sphere draw an arc CM of a great circle and on it lay off an

arc CB equal to a. Through C draw an arc CN
making an angle C with Clf.f On CN lay off

an arc CA equal to ft and join A and B by an

arc of a great circle. Then ABC will be the re-

quired triangle.

Case IV. Given two angles and the included

side, A, B, c.

By Case III construct the polar triangle whose

two sides and included angle are:

a =180 -4, ft =180 -J3, C=i8o-c.
The polar of this triangle will be the required triangle.

* To lay ofT an arc equal to a means to lay off an arc of a great circle containing
a degrees. This may be readily done by means of a strip of paper or cardboard

equal in length to a semicircumference of the sphere and dividing it into 180 equal
divisions. Each division will then represent one degree of angular measure on the

sphere.

t This is most easily done as follows: From C as a pole draw the arc of a great

circle. Let M be its intersection with CM. On this arc lay off MN equal to C.

Join N and C by an arc of a great circle. Then NCM will be the required angle.

(Why?)

Fig. ii.
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Case V. Given two sides and the angle opposite one of these sides,

a, b, A.

We distinguish two cases according as the angle A is acute or

obtuse.

I. A acute.

On a sphere (Fig. 12) draw two arcs, AM and AN
y making an angle

A with each other and let A and A '

be their points of intersection,

On one of these arcs, as AN, lay oil AC equal

to b. With C as a pole and an arc equal to a

describe a small circle.* In general this circle

will intersect the arc AM in two points, B and

B', either of which, if its angular distance

from A is less than 180, will form the third

vertex of a triangle whose other two vertices

,,. are A and C and which will contain the three
Ing. 12.

given parts.

Let p CD be the arc through C which is perpendicular to AM.
(a) If a is less than p 1

the small circle will not intersect AM and

no triangle exists having the given parts. The solution is impossible.

(b) If a p, there is one solution. The resulting triangle has a

right angle at D.

(c) If a is greater than p but less than the shorter of the two sides,

AC =
b, CA' = 180 -

b, there will be two solutions, ACB and ACff .

(d) If a is greater than the shorter of the two sides b and 180 b

but less than the longer, there will be one solution.

(e) If a is greater than the longer of the two sides b and 180 b

there will be no solution.

II. A obtuse.

Draw the two arcs AM and AN' (Fig. 12), making the angle A with

each other. On one of these arcs, as AN', lay off AC' equal to b.

With C' as a pole and an arc equal to a describe a small circle which,

in general, will intersect the arc AM in two points, B and B', either of

which, if its angular distance from A is less than 180, will form the

third vertex of a triangle whose other two vertices are A and C'.

Let p'
= C'D be the arc through C' which is perpendicular to AM.

As p is the shortest arc that can be drawn from C to AM, so p' is the

longest arc that can be drawn from C' to A M.

* This may be done by means of a pair of compasses.
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(a) If a is greater than />', the small circle will not intersect AM
and no triangle exists having the given parts. There is no solution.

(b) If a = p'j there is one solution. The resulting triangle has a

right angle at D.

(c) If a is less than p
f
but greater than the longer of the two sides,

AC =
b, CA' = 180 -

b, there will be two solutions, AC'B and

ACE'.

(d) If a is less than the longer of the two sides, b and 180 b,

but greater than the shorter, there will be one solution.

(e) If a is less than the shorter of the two sides, b and 180 b,

there will be no solution.

Case VI. Given two angles and the side opposite one of them, A, B, c.

By Case V construct the polar triangle whose parts are a = 180 A
,

b = 180 -
B, A = 180 - a. The polar of this triangle will be

the required triangle. As in Case V, so here there may be either one

or two solutions or the solution may be impossible.

12. The General Spherical Triangle. We have defined a spheri-

cal triangle as the figure formed by joining three points on a sphere,

which lie not in the same great circle, and no two of which are opposite

ends of the same diameter, by the shortest great arcs. From this it

follows that each side of a spherical triangle is less than a semicir-

cumference, and its angular measure less than 180.

Now the great circle drawn through two points is divided by those

points into two arcs either of which may be considered the arc between

the two points. If one of these arcs is less

than 180 the other will be greater than 180

for their sum is always 360. Hence if we

drop the word shortest from the above defini-

tion, the resulting definition admits triangles

whose sides have any value between o and

360. Such triangles are called general spheri-

cal triangles. Since the arc between each two

vertices may be chosen in two ways there are

eight general triangles having the same three

vertices. Fig. 13 shows two of these triangles, the triangle AMBC
and the triangle AM'BC.
The study of general spherical triangles forms the object of Higher

Spherical Trigonometry. Their principal applications are found in

astronomy where it is frequently necessary to consider triangles
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whose sides or angles exceed 180. We observe that every spherical

triangle, one or more of whose parts exceed 180, may be solved by means

of another whose parts are less than 180, though this is not the simplest

way of treating such triangles. In the present text we shall limit our

discussion to triangles which satisfy the first definition, that is, tri-

angles each of whose parts is less than 180.

EXERCISE 2

1. Prove the two theorems of Art. 7.

2. Prove that the polar of a right spherical triangle is quadrantal,

and conversely, that the polar of a quadrantal triangle is a right

triangle.

3. Prove that the polar of a birectangular spherical triangle is

biquadrantal, and conversely, that the polar of a biquadrantal tri-

angle is birectangular.

4. Prove that a trirectangular triangle is its own polar.

5. If the sides of a triangle are each less than 90 it lies wholly

within its polar; if each of its sides is greater than 90 its polar lies

wholly within it.

6. In any spherical triangle a + b + c < 360. By applying this

relation to the polar show that in every spherical triangle

180 < A + B + C < 540.

7. In every spherical triangle the sum of two sides is greater than

the third side, that is a + b > c. By applying this relation to the

polar show that in every spherical triangle the difference between any

angle and the sum of the other two is less than 180, that is, A + B
C < 180.

8. It will be shown later that in any spherical triangle

cos a cos b cos c + sin b sin c cos A.

By applying this formula to the polar triangle show that also

cos A = cos B cos C + sin B sin C cos a.

9. By applying the formulas of Problem 6, Exercise I, to the polar

triangle, deduce the two new formulas,

c_ /cos (S-A) cosJSj- B) . c _ 4 / cos^coslS - C)
COS

2~~V sin i sin* "' Sm 2~V sin4sin
'

, e A+B+C
where o
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10. Construct the triangle called for in Case IV, Art. n, without

employing the polar triangle.

11. In Case V, Art. n, write out the conditions under which

the construction admits (a) one solution, (b) two solutions, (c) no

solution.



CHAPTER II

RIGHT AND QUADRANTAL SPHERICAL TRIANGLES*

13. Formulas for Right Spherical Triangles. Every right

triangle has a right angle and five other parts which, beginning with

a side including the right angle, are denoted in order by a, B, c, A, b.

We shall show that every three of these five parts are so related that

when two are given the third may be found. Now the above five

parts admit of ten different sets of three, namely:

A, a, c; A, b, c; A, a, b; A, B, b; c, a, b;

B, b, c; B, a, c; B, b, a; B, A, a; c, A, B;

hence we shall find ten formulas for the right spherical triangle.

Let A BCj Fig. 14, be a right spherical triangle, C the right angle. Let

O be the center of the sphere and O ABC the trihedral angle formed

by the planes of the great circles whose

arcs are a, &, c, respectively. It is

shown in geometry that the face angles

BOC, COA, AOB are measured by the

arcs a, &, c, respectively, and that the

dihedral angles OA, OB, OC are equal

pi
to the angles A, B, C, respectively.

From any point P in OB draw PR
perpendicular to OC, and from R draw RS perpendicular to OA.

Join P and S. Then SR is perpendicular to PR (why?), and PS is

perpendicular to OA (why?). Hence

triangle ORP has a right angle at R,

triangle OSR has a right angle at S,

triangle OSP has a right angle at 5,

triangle PRS has a right angle at R,

and angle PSR equals angle A (why ?).f

*
If the class has some knowledge of analytical geometry and the teacher wishes

to cover the subject in the least time possible, he may omit the work to Art. 26.

The fundamental relations for the oblique triangle as there developed may be

specialized for the right triangle by putting C 90.

t See footnote on page 15.

14
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In triangle PRS
'

ASm

or

Interchanging letters

= RP/OP _
SP SP/OP

~~

sin SOP
sin ^1 = sin a/sin c.

sin B = sin fe/sin c-

^ _ SR/OS _ tan 7?O5
~

or

Interchanging letters

cos A = tan &/tan c.

cos B tan cr/tan c.

or

Interchanging letters

A = = tan POR
SR SR/OR 'siiiROS'

tan A tan a/sin b.

tan B = tan &/sin a.

. . _RP RP
an A

(i)

(2)

(3)

(4)

(5)

(0)

OR OS

= tan POR sec ROS cot POS

__ tana __i

tan c cos b

whence, substituting the value of tan a/tan c from (4), we have

sin A = cos B/ cos b. (7)

Interchanging letters sinB = cos ^1/cos a. (8)

Ônce more, cos
OS O7? 05
-

^
=^ ^ = cos PO7t cos ROS,

or cos c = cos a cos &. (9) <

Finally, substituting in (9) for cos a and cos b their values from (7)

and (8), we obtain

cos c cotA cot B.

t Let the student who has undue difficulty in per-

ceiving these relations construct the trihedral angle

and the corresponding spherical triangle as follows:

From a piece of cardboard or tin cut out a circle with

any radius.

Draw four radii 0.4, OC, OB, 0.4', making the

angles 50, 70, 77 18', respectively. Cut the circle

along the radii 0.4 and 0^4', and remove the sector

AMA'. Cut the remaining sector partly through along

OC and OB and bend the cardboard along these radii Fig. 15.
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14. Plane and Spherical Right Triangle Formulas Compared.
The student will be assisted in remembering the ten formulas of the

preceding article if he associates them with the corresponding formu-

las for the plane right triangle, as shown in the following table:

15. Generalization of the Right Triangle Formulas. In Fig.

14 the sides a and b are each less than 90. It remains to show that

the formulas in Art. 13 hold for all possible values of a and b.

I. One side adjacent to the right angle greater than po and the other

less than po.
In the right triangle ABC (Fig. 16), let a be greater than 90 and

b less than 90. The co-lunar triangle AE'C will have a right angle

Fig. 16.

at C and the adjacent sides b and a
f

180 a, each less than 90.
We may, therefore, apply the formulas of Art. 13 to this triangle.

Thus (i) gives

sin CAB' = sin a' __ sin (180 a) sin a
,
or sin A sing

sin c
'

sin c' sin (180 c) sin c

that is (i) remains true for the triangle ABC.

until QA' meets OA. The figure thus formed will be a right trihedral angle, ABC
will form a right spherical triangle, and the lines PR, RS and PS' will form the

triangle PRS of Fig. 14.
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Similarly each of the other nine formulas will be found true for the

triangle ABC.
II. Each of the sides adjacent to the right angle greater than po.
In the right triangle ABC (Fig. 17), let a and b be each greater than

90. The co-lunar triangle ABC' will have a right angle at C and the

adjacent sides a' 180 a and b' = 180 6, each less than 90.
We may, therefore, apply the formulas of Art. 13 to this triangle.

Thus (i) gives

T>A^>f sin a' sin ( 180 a) sin a . A sin a
sin BAC = = ^

:
= -

,
or sin A = -

sin c sin c sine sin c

that is (i) holds true for triangle ABC, and similarly each of the other

nine formulas will be found true for this case.

This proves that the formulas of Art. 13 may be applied to the

solution of every possible right spherical triangle.

16. Napier's Rules of Circular Parts.* Lord Napier, the in-

ventor of logarithms, first succeeded in expressing the ten right

triangle formulas by two simple rules. Let us put

90 A = A, 90 c = c, 90 B = B,

then

sin A = cos A
,

cos A = sin A
,

tan A = cot A
,

cot A tan A ,

sin c = cos c, etc., sin B = cos Bj etc.

The ten equations of Art. 13 may then be written as follows, the new
formulas being numbered as in Art. 13.

sin a = cos A cos c (i) sin A = tan b tan c (3)

sin b = cos B cos c (2) sin B = tan a tan c (4)

sin B = cos A cos b (7) sin b = tan a tan A (5)

sinA = cosB cos a (8) sin a = tan b tan B (6)

sin c cos a cos b (9) sin c tanA tan 5 (10)

Let us now arrange the five parts a, B y c, A, b

in their order in a circle as in Fig. 18. Any one

of these five parts, as a, being chosen as the mid-

dle part, the two next to it, as b and B, are

called adjacent parts and the remaining two parts,

* This and the following article may be omitted by those

who prefer to memorize the preceding ten formulas as sug-

gested in Art. 14.
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as A and c, are called opposite parts. Then each of the five equa-
tions on the right are contained in

Rule i. The sine of the middle part is equal to the product of the

tangents of the adjacent parts,

and the five on the left are contained in

Rule 2. The sine of the middle part is equal to the product of the

cosines of the opposite parts.

These two rules are known as Napier's Rules of the Circular Parts.

17. Proof of Napier's Rules of Circular Parts. Napier's rules

are commonly looked upon as memory rules which happen to include

the ten right triangle formulas. They have been proclaimed the

happiest example of artificial memory known t;> man. Because of

their supposed artificial character their value as an instrument in

mathematics has been questioned. We shall now show that Napier's

rules are not mere menotechnic rules but constitute a most remarkable

theorem which admits of rigorous proof.

Let ABCi be a right spherical triangle, d the right angle. With
B as a pole draw a great circle cutting C\B produced in G and BA
produced in G. With A as a pole draw a great circle cutting AB
produced in C* and C\A produced in G>. The resulting figure is a

spherical pentagon ABPRS, bordered by five

triangles I, II, III, IV, V.

Since B is the pole of the arc GG* the angles

at G and G are right angles and since A is the

pole of arc CiCz the angles at C\ and C$ are

right angles. The five triangles are, therefore,

right triangles.

IQ
Since G and G are right angles, S is the pole

of GG and consequently SCi and SG are quad-
rants. For like reasons /?C3 ,

7?C4 ,
PCb , PCi, J5C2 ,

C3 ,
AC4 , AC:,

are quadrants.

With these preliminary observations it is now easy to show that

the five triangles I, IT, III, IV, V have the same circular parts taken

in the same order, while the position of these parts with respect to the

right angle is different in each of the triangles.

Let us compare the two triangles ABCi and PRC2 and denote by
Oz, B, &, Az, bz the five parts of II which correspond to a, B, c, A,
b of I. Comparing angular measures we have
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- C2C3
- PCs = (180

- B)- 90 =
90

- B = B,

C4
- AB)B2

= PPC2
= i8o-PPS = 180- C3C4

= 180-
= 180 -

(90 + 90
-

c)
=

c,

PC5
- C4C6

= 90 + 90
- C4/1C5

,1 2
= RFC* = 180 - #PP = 180 - CA = 180 -

(Ci/1 + 4C6)

= 180 - (6+ 9o)= b,

b, = PC2
= ^C2

- .BP = 90
- (dP - G5) =

90
-

(90
-

a)
= a;

hence, 2
= B, B2

=
c, C2 =.4, ^ 2

=
ft, fe

= ^.

Now the parts of triangle III may be obtained from those of II, the

parts of IV from those of III, and the parts of V from those of IV
7
in

exactly the same way that the parts of II were obtained from those

of I. Writing corresponding parts under each other, and remember-

ing that to obtain the circular parts we must replace the hypotenuse

and angles of each triangle by their complements, we have the follow-

ing table:

The column on the right not only shows that each triangle has the same

circular parts taken in the same order, but also
that^

the middle part

c of the first triangle is successively replaced by A, b, a, B in the

other four. Now it was shown in Art. 13 (10), (9), that for the tri-

angle ABCi,

cos c = cot A cot J5, or sin c
~ tan .4 tan B, (I)

cos c cos a cos b, or sin c cos a cos b
y (II)

hence formulas (I) and (II) hold when any part other than c is taken

for the middle part, and thus Napier's rules are shown to be neces-

sarily true.



20 SPHERICAL TRIGONOMETRY [CHAP, n

EXERCISE 3

1. Apply the ten formulas for the right spherical triangle to the

polar and obtain ten formulas for the quadrantal spherical triangle.

2. Write out the ten equations for the right spherical triangle by
means of Napier's rules.

3. From the relation cos c cos a cos b show that if a right tri-

angle has only one right angle, the three sides are either all acute, or

one is acute and the other two obtuse.

4. From the relation cos A = cos a sin B show that the side a is

in the same quadrant as the opposite angle A.

5. If in a right spherical triangle a = c 90, prove that cos b =
cos B.

6. Also if a = b, prove that cot B = cos a.

Prove the following relations for the right triangle ABC:

7. cosM sin 2
J5 = sin 26 sin

2
/!.

8. sin A sin 2 b = sin c sin 2 B.

9. sin 2a + sin 2
> sinV = sin 2a sin 2

.

10. sin A cos c = cos a cos B.

n. sin b = cos c tan a tan B.

12. sin 2
.-! cos2 sinV = sinV sin 2

&.

18. To Determine the Quadrant of the Unknown Parts in a

Right Spherical Triangle. When an unknown part is found from

its cosine, tangent, or cotangent, the sign of the function shows whether

the part is in the first or second quadrant, that is, whether it is less

than 90 or greater than 90. In the cases where the unknown part

is found from the sine, the following theorems enable us to tell, in every

case in which the triangle has but one solution, whether the part is

greater or less than 90.
T. At least one side of every right spherical triangle is in the first

quadrantj the remaining two are either both in the first quadrant or both

in the second. For, since the cosine of an angle in the second quadrant
is negative, it is plain that the equation

cos c cos a cos b (Art. 13 (10))

must have either none or two of the angles a, b, c in the second

quadrant.

11. Either of the oblique angles of a right spherical triangle is in the

same quadrant as its opposite side. For since

sin A cos B/cos b (Art. 13 (7))



20] RIGHT AND QUADRANTAL SPHERICAL TRIANGLES 21

and sin A is always positive, it is plain that cos B and cos b must either

be both positive or both negative, that is, B and b and similarly A
and a, must be in the same quadrant.

19. The Ambiguous Case of Right Spherical Triangles.

When the given parts of a right triangle are an angle and the side

opposite, the triangle has two solutions. For, the

given parts being A and a (Fig. 20), the co-lunar

triangle A'BC as well as the triangle ABC has the

given parts. Notice that A'B and A'C are the

supplements of AB and AC, respectively, and that

angle A'BC is the supplement of angle ABC.
Both sets of values are given by the formulas, for,

A and a being given, c, b, and B are found from

their sines (Art. 13, Equations (i), (5) and (8)).

20. Solution of Right Spherical Triangles. Napier's rules, or,

if it is preferred, the ten formulas in Art. 13, enable us to solve every

conceivable right spherical triangle, two parts being given. The

procedure in any given case is as follows:

I. We consider three parts, two of which are

the given parts and the third the part to be

found. If these three parts are adjacent we take

the middle one for the middle part, if two only

are adjacent we take the remaining one for the

middle part and by Napier's rules write down

the formula relating the three parts.

Thus if A and c are the given parts (Fig. 21), and

b is to be found, we take A for the middle part and by Napier's first rule,

sin A tan b tan c, that is, cos A = tan b cot c. (i)

If B is to be found, we take c for the middle part, and again applying

Napier's first rule we have

sin c = tan A tan B, that is, cos c = cot A cot B. (2)

If a is the part required, we take a for the middle part, and applying

Napier's second rule, we have

sin a = cos A cos ?, that is, sin a = sin A sin c. (3)

II. Next we solve the equation for that function which contains

the unknown part. Thus to find b, we have from equation (i) above,

tan b = cos A tan c, to find B we have from (2) cot B = cos c tan A
,

to find a we use equation (3) as it stands.

Fig. 21.
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III. By means of the equations thus obtained and the use of tables

we compute the unknown parts, remembering,

(a) If the unknown part is found from its cosine, tangent, or co-

tangent, the algebraic sign of the function determines the quadrant
of the angle.

(b) If the unknown part is found from its sine, the quadrant of the

angle is determined by one of the theorems of Art. 18.

(c) If the given parts are an angle and the side opposite, each

unknown part has two values which are supplements of each other.

IV. Check. When the unknown parts have been computed, their

correctness should be checked by the formula obtained by applying

Napier's rules to these parts. Thus in the above example, after

b, B, and a have been computed their values must satisfy the formula

(a being the middle part)

sin a = tan B tan
Z>,

that is, sin a = cot B tan b.

A
^ '

EXAMPLE i.

Given b/ I \ Required
^ = 67 34' 40", b = 160 40' 56",
=

137 24' 54". V I /
=

'50 44' oo",

a = 35 42' 57".

Fig. 22.

Solution.

To find b.

cos A = cot c tan 6,

or, tan b cos A tan c.

log cos A =
9.58141

log tan c =
9.0)6334?^

log tan b = 9-54475^
= i6o4o'56".

To find a.

sin a = sin A sin c.

log sin A ==
9.96586

log sin c = 9.83038

log sin a = 9.79624

-354*'S7".
* n written after a logarithm means that the number of which the logarithm is

taken (in this case tan c) has the negative sign.

To find B.

cos c = cot A cos B,

or, cot B = cos c tan A .

log cos c = 9.86704^

log tan A = 0.38445

log cot B 0.251497*

Check.

sin a cot B tan b.

log cot B = 0.25149^

log tan b = 9.54475^

log sin a = 9.79624 (check).
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In this case, since tan b and cot B are negative, b and B must be

taken in the second quadrant, while a is taken in the first quadrant

since by Art. 18 it must be in the same quadrant as the opposite

angle A.

EXAMPLE 2.

Given /c/^L \ Required

B =
25 36' 30",

b = 24 20' 45".

A =8i 48' 3o",

,4' = 98 n' 30",

c = 72 30' 45",

c' = 107 29' 15",

a = 70 44' 45
"

15' 15'-

or,

Solution.

To find A.

cos = sin A cos J,

sin A = cos J5/cos 6.

log cos B =
9.95510

colog cos b 0.04045

log sin A ="9^99555

A = 81 48' 30".

To find c.

sin b = sin # sin c,

or, sin c = sin b/sin 5.

log sin b =
9.61515

colog sin J5 = 0.36430

log sin c =
9-97945

, -72 30' 45"

To find a.

sin a cot B tan #.

log cot B =
0.31940

log tan & =
9.65560

log sin a 9.97500

a =70 44' 45".
= 109" is

Check.

sin a = sine sin A.

log sin c =
9.97945*

log sin A = 9.Q9555

log sin a = 9.97500 (check).

In this case there are two solutions. By Art. 18 a and A must be

in the same quadrant, hence the acute values of both a and A belong

to one triangle and the obtuse values to another. Again, by Art. 18,

the three sides a, 6, c are either all in the first quadrant, or two are

in the second quadrant, hence c is in the same triangle as a, and c
r
is

in the same triangle as a'.
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EXERCISE 4

When no answer is given the results must be checked. For the

number of significant figures to be retained in the answer see PL

Trig., Art. 44-

Solve the following right spherical triangles when the parts given

are:

1. = 81 25', b= 101 15'.

Ans. A = 81 35', B = 101 08', c = 94 40'.

2. c=865i', B = i8o4'.
Ans. b - i8o2', a = 86 41', A = 88 58'.

3. a = 70 28', c = 98 18'.

Ans. A = 72 15', 5 = 114 if, b = 115 35'.

4. c= n84o', yl = 128 oo'.

Ans. a = 136 16', & = 48 24', B = 58 27'.

5. A = 81 13', 5 = 65 24'.

Ans. a = 80 20',
= 65 05', c = 85 56'.

6. b= ii249
/

,
J5= 100 27'.

ylws. fl = 26 oo'j A 27 53', c = 110 24';

a' = 154 oo', yl' = 152 07', c' = 69 36'.

7. c = 81 10', fl = 100 47'.

8. J = 75 23', ^ = 75 23'-

9. a =72 15',
= 83 25'.

10. 6 = 148 28', B = 101 04'.

11. a = 43 40.5',
= 98 29.1'.

Ans. A - 44 17.0', B = 08 11.4', Z - ioi46.3 '.

12. a= 28 47.0', b= 110 27.3'.

/bzs. ^1 = 30 23.1', B 100 10.9', c = 107 50.2'.

13. b = 74 21.9', A =
3 57-^.

Ans. B = 80 14.7', <z
= 37 54.1', c = 77 43.3'.

14. A = 49 15.0', B = 52 26.0'.

Ans. a = 34 33-7', * = 3^ 24.6', c = 4* 29.3'.

*5- c = 5 20.2', A = 101 29.4'.

^W5. a = 131 01.7', & = 166 29.5', B = 162 20.1'.

16. a = 32 io.8'
y
A = 42 24.0'.

^ = 43 34-8', B = 60 43.2', ^ = 52 06.0';

V = 136 25.2',^'
= 119 16.8', c' = 127 54.0'.
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17. c = 95 26.2', b = 12 37.8'.

18. a = 119 56.1', b = 151 43.6'.

19. ,4 - 70 56.9', B = 39 25.6'.

20. 6 = 112 24.8', 5 = 94 58.9'.

21. a = 41 50' 20", & = 50 18' n".

4w. ^ = 49 19' 29", B = 61 01' 33", c = 61 35' 05".

22. c = 110 46' 20", 5 = 80 10' 30".

Ans. b = 67 06' 53", a = 155 46' 43", -1 = 153 58' 24".

23. 6 = 96 49' 59", -4 = 50 12' 04".

,te. a = 50 oo' oo", = 95 14' 41", c = 94 23' 10".

24. ,4 =46 59' 42", =
57 59' 1 7"-

4iw. a = 36 27' oo", b = 43 33' 3o", c = 54 20' 03".

25. a = 32 09' 17", c = 44 33' 17".

yl ws. A = 49 20' 16", 6 = 32 41' oo", B = 50 19' i(/'.

26. 5 = 160 oo' oo", B = 150 oo' oo".

Ans. a = 140 55' 09", A = 112 50' 17", c = 43 09' 37";

a' = 39 o4
r

5i", -1' = ^>7 09' 43", ^ = ^6 50' 23".

27. .4 = 60 45' 45", ^-57 56' 56".

28. r = 120 23' 56", A = 110 34' 42".

29. a = 116 52' 45", b = 16 06' 06".

30. ,l = Si 58'36'>=6 7 2o'3o".

21. Solution of Quadrantal Triangles. The polar of a quadrantal

triangle is a right triangle which may be solved by the method of

Art. 20 and from it the required parts of the original quadrantal

triangle are obtained by means of the relations in Art. 7. Or we may
apply the right triangle formulas of Art. 13 to the polar and obtain a

new set of formulas for the solution of any quadrantal triangle.

Thus formula (i), Art. 13, viz., sin A sin a/sin c, when applied to the

polar triangle becomes sin (180 a) sin (180 yl)/sin (180 C)
or sin a = sin vl/sin C. Similarly we obtain each of the following

formulas for the solution of quadrantal triangles, C being the angle

opposite the quadrant c.

sin a sin yl/sinC (i) tan b = tanJ5/sinyi (6)

sin b = sin B/sin C (2) sin a cos b/cos B (7)

cos a = tan ^/tan C (3) sin b ^ ^s a/cos A (8)

cos b = tan A /tan C (4) cos C = cos A cos B (9)

tan a = tan .4 /sin (5) cos C = cot a cot & (10)
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EXAMPLE. Solve the quadrantal triangle in which

a = 97 24', A = 103 12', c = 90.

Solution. The polar triangle has the parts

A = 180 -
97 24'

= 82 36', a = 180 -
103 12' = 76 48',

C = 180 -
90 = 90.

Solving this right triangle by the method of Art. 20 we find

B = 34 20', b = 33 37', c = 79 02';

B' = 145 40', V = 146 23', <;' = 100 58'.

The required parts of the quadrantal triangle

are, therefore,

b = 180 -
34 20' = 145 40',

V = 180 -
145 40' = 34 20',

B = 180- 33 37'= 146 23',

B' = 180 -
146 23'

=
33 37

/

,

C = 180 -
7Q 02' = 100 58',

C = 180 - 100 58'
=

79 02'.

Fig. 24 represents both solutions geometrically.

22. Special Formulas for Angles near 0, 90 or 180. An

angle near o or 180 can not be accurately determined from its

cosine, nor an angle near 90 from its sine (see PL Trig., Art. 21); in

such cases the formulas of Art. 13 are, therefore, no longer adequate.

The difficulty may be avoided by employing the following formulas:

A near o or 180,

B near o or 180,

a near o or 180,

b near o or 180,

c near o or 180,

A near 90,

B near 90,

a near 90,

b near 90,

tan2
1 A = sin (c

-
ft)/sin (c + b).

tan2
\ B sin (c a)/sin (c + a).

tan2
\ a tan \ (c + b) tan \ (c &).

tan2
\ b = tan \(c + a) tan \ (c a).

tan2 lc = -cos (A + )/cos (A
- 5)

tan 2
(45

-
\ A) = tan J (c

-
fl)/tan \ (c + a)

= tan J (^
-

b) tan J (5 + b).

tan2
(45

-
\ B) = tan J (c

-
&)/tan } (c + *)

= tan |(yl a) tan J (-4 + a).

tan2
(45

-
\ a) = sin (B - &)/sin (B + b).

tan2
(45 J b)

= sin (yl a)/sin (.4 + a).

c near 90, tan2
(45 | c)

= tan 4 (-4 a)/tan -| (^i + a)

(i)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(n)

(12)

tan J (B - (5 + ft). (13)
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To deduce (i) we have

cos A = tan b/tan c, (Art. 13 (3))

i cos A tan c tan ft t~ , ,. N

(Comp. and div.)
i + cos v4 tan c + tan b

i cos ^4 i ( i 2 sin2 1 ^4) A 91 , / T, . AA x- _ - rr~ (
= tan i ^> (pl - TnS-> Art. in)

-
* e>

_ -r
1 + (2 cos2 -

and

tan c tan ft __ sin c cos ft cos c sin ft __ sin (c ft) .

tan c + tan ft sin c cos ft -f- cos c sin ft sin (c + ft)

(PL Trig., Art. 109)

hence tan2
\ A sin(c ft)/sin (c + ft).

Again, to deduce (13) we proceed as follows:

sin c = sin ft/sin $, (Art. 13 (2))

i sin c sin B sin ft /rn . . . ,

^ = -^-^ , r-y (Comp. and div.)
i + sin c sin ^ + sin ft

i sin c _ i 2 sin ^ c cos
-J
c __ (cos | c sin J- c)

2

i + sin c i + 2 sin ^ c cos 2 c (cos ^-
c + bin 3 r)

2

(PL Trig., Art. in)

2 , -
x

iT)*"
tan (45

~
|c)j

(PL Trig., Art. no)

and

sin - sin ft _ 2 cos j (B + ft) sin | Qg - ft) = tan -| (7?
-

ft) .

sin B + sin ft

"
2~sin |~(i + ft) cosj (B ^^

"
tan (5 + ft)

'

(PL Trig., Art. 113)

hence tan2
(45

-
\ c)

= tan i (^ - ft)/tan i (J? + ft).

All the other formulas given above may be deduced in a similar

manner.

EXERCISE 5

1. Solve the quadrantal triangle given in Art. 21 by using formu-

las (8), (5), and (i) of that article.

Solve the following quadrantal triangles:

2. C =
67 12', ft = 123 48'.

Ans. B = 130 oo', A =
52 56', a = 59 5<$'-
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3. C= 141 02.8', 4 = 142 05.9'.

Ans. B = 170 15.0', b = 164 29.3', a = 102 10.5'.

4. a = 174 12' 49", & = 94 08' 20".

s. A = 175 57' 10", B = 135 42' 50", C =
135 34' 07".

5. a = 91 3o',
= 92 24'-

6. C =136 14.7', ^ = 141 45-5'-

7. a= I i2 56'56",C=74 45'3".

8. In a right spherical triangle one side is 95 52' 15" and the

hypotenuse is 95 44' 12". Find the angle opposite the given side.

Ans. 91 15' 01".

9. Solve the right spherical triangle in which a = 37 40' 12",

c = 37 4o
r

20".

Ans. A = 89 25' 32", B - 00 43' 32", & = 00 26' 36".

10. Solve the right spherical triangle in which a 34 06' 13",

,4 =34 07' 41".

Ans. b = 87 32' 39", B = 88 37' 21", c = 87 58' oo".

11. Prove formulas (2), (5) and (10), Art. 22.

12. Verify formulas (3), (6) and (7), Art. 22.

23. Oblique Spherical Triangles Solved by the Method of

Right Triangles. Just as every plane triangle can be solved by

considering it the sum or difference of two right triangles formed by

drawing a perpendicular from a vertex of the triangle to the opposite

side or opposite side produced (PI. Trig., Art. 52), so likewise every

Fig. 25. Fig. 26.

oblique spherical triangle ABC may be solved by considering the

triangle as the sum (Fig. 25) or the difference (Fig. 26) of the two

right triangles ACD and BCD formed by the perpendicular arc of a

great circle drawn from one of the vertices to the opposite side or

opposite side produced.
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We shall denote by m and n the segments AD and DB into which
the perpendicular p = CD divides the opposite side c, and by M and

N the angles ACD and DCB into which the angle C is divided by the

same perpendicular. We then have

c = m + n, C = M + N (Fig. 25); c = m - n, C = M -N (Fig. 26).

The method of solving oblique spherical triangles by dividing them
into right triangles, while exceedingly simple in principle, is not the

most convenient method nor the method commonly employed in

actual computation. Better methods will be developed in the next

chapter and the student is expected to familiarize himself with the

methods there presented rather than to depend on the method of the

present article.

Case III. Given two sides and the included angle, b, c, A.

Fig. 27.

Solution, i. In triangle ACD find
/>, M and m.

2. n = c m (Fig. 27), or n = m c (Fig. 28).

3. In triangle BCD find N, a and B.

4. C = M + N (Fig. 27), or C = M - N (Fig. 28).

5. Check. Repeat the solution drawing the perpen-
dicular from B to the side AC.

Case IV. Given two angles and the included

side, Bj C, a.

Solution. Solve the polar triangle by Case
III and then compute the unknown parts of the

original triangle.

Case V. Given two sides and the angle oppo-
site one of them, a, 6, A .

Fig. 2g.

Solution. In this case there are two solutions, provided that a is

intermediate in value between p and both b and 180 b (Art. n).
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1. In triangle ACD find p, M = ACD, and m = AD.

2. In triangle BCD find N = BCD, B, and n = DB,
AB'C = 180 - B.

3. ACB = M + N, ACE' = M - N,AB = m + n,AB' = m - n.

4. Check. Assume b
y c, A as the given parts and find the other

parts by Case III.

Case VI. Given two angles and the side opposite one of them,

A,B,a.
Solution. Solve the polar triangle by Case V and from it find the

unknown parts of the original triangle. As there may be two solu-

tions in Case V so Case VI may have two solutions.

Case I. Given the three sides, a, b, c.

Fig. 30. Fig. 31.

Solution. In the triangle ACD we have by Napier's rule

sin b cos p cos m, or cos p = cos b/cos m.

Similarly we have in the triangle BCD
sin a = cos p cos n, or cos p = cos a/cos n.

Hence

cos a cosw r , . , cos a cos b cos m cos n- ~ -- from which -- --
1
= ------

cos b cos n cos a + cos b cos m -+ cos m

Now

: tan| (a+b) tanf (a-.-
-

! , ,
,v
-

5rr rr
cosa+cos6 2 cos-2 (0+6) cosj (a b)

so that

tan J (a + ) tan ^ (a b) tan \(m + n) tan \(m~ n),

from which

tan |(m )
= tan ? (a + b) tan | (a ) cot ^ c,
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if m + n = c (Fig. 30),

or tan \ (m + n) = tan ^ (a + b) tan \ (a b) cot % c,

if m n = c (Fig. 31).

We have, therefore, the following steps:

1. Find | (m n) (Fig. 30), or f (w + rc) (Fig. 31),

from the relation

tan 2 (m n) = tan \ (a + b) tan (a &) cot | c,

tan ^ (m + ri)
= tan

3- (a + b) tan J (a b) cot c.

2. w = i (w + n) + I (m n), / == (m + n) J (m w).

3. In triangle /1CZ) find A and M.

4. In triangle CZ> find B and tf .

5. C = M + N (Fig. 30), or C = M - tf (Fig. 31).

6. Check. Repeat the solution drawing the perpendicular from

B on AC or from A on BC.

Case II. Given the three angles, A , B 7
C.

Solution. Solve the polar triangle by Case I, and from it compute
the unknown parts of the original triangle.

EXERCISE 6

1. Show how Case IV may be solved by means of right triangles

without using the polar triangle, and outline the steps of the solution.

2. Prove BowditcWs Rules for Oblique Spherical Triangles which

may be stated as follows: If a spherical triangle is divided into two

right triangles by a perpendicular let fall from one of the vertices to

the opposite side, and if in the two right triangles the middle parts

are so chosen that the perpendicular is an adjacent part in each

triangle, then

The sines of the middle parts in the two triangles are proportional to

the tangents of the adjacent parts;

but if the perpendicular is an opposite part in each triangle, then

The sines of the middle parts are proportional to the cosines of the

opposite parts.

As in the case of Napier's rules, the parts referred to in these rules

are the circular parts of the two triangles. By the use of Bow-
ditch's rules the solution of oblique spherical triangles by means of

right triangles may be somewhat shortened.
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Solve the following triangles by means of right triangles:

3. Given b = 88 24', c = 56 48', A = 128 16';

find B =
65 13', C = 4928', a = 120 u'.

4. Given- a = 103 44', b = 65 12', C = 97 34'.

5. Given a = 148 34.4', b = 142 n.6', ^4 = 153 17.6';

find c = 62 08.6', B = 148 06.3', C = 130 21.2',

<f = 7 184', B' = 31 53y, C' = 6 17.6'.

6. Given A = 110, 5 = 62, a = 49.

7. Given A = 80 20.2', B = 73 46.7', C =
54 08.5';

fmd a = 64 47.2', b = 61 47.3', c 48 03.4'.

8. Given a =
31 n' 07", & = 32 19' 18", c = 33 15' 21";

find yl = 59 29' 42", B = 62 49' 42", C = 65 5O
7

48".

9. Given a = 87 45' 24", b = 96 12' 15", c = 100 08' 56".

10. Given A = 87 45' 24", B = 96 12' 15", C = 100 08' 56".



CHAPTER III

PROPERTIES OF OBLIQUE SPHERICAL TRIANGLES

WE shall now develop a number of formulas involving the parts of

any spherical triangle, from which, if any three parts of the triangle

are given, the remaining parts may be derived by computation with-

out first dividing the triangle into right triangles as was done in the

last article. Then, in order to facilitate the work of computation,

we shall transform these formulas so as to adapt them to the use of

logarithms. The actual application of the formulas to the solution

of triangles we shall reserve for a separate chapter.

24. The Law of Sines, (a) First Proof. Let ABC be any

spherical triangle, p the perpendicular from one of the vertices C of

the triangle to the opposite side AB (Fig. 32) or AB produced (Fig.

33)-

Fig. 32 Fig- 33-

By Napier's rules, or the formulas of Art. 13, we have

from triangle ACD sin p sin b sin A,

and from triangle BCD sin p = sin a sin B (B acute),

or sin p sin a sin (180 B)

sin a sin B (B obtuse) .

Hence, whether the perpendicular falls within the triangle or without,

we have
sin p = sin asm A sin a sin B.

Advancing letters, sin c sin B = sin b sin C,

sin a sin C sin c sin A
33
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These equations may also be written in the form

sin a __
sinfr _ sine , ,

sin A
~~

sin B
~~

sin C
9

or in words, The sines of the sides of a spherical triangle are propor-

tional to the sines of the opposite angles.

(b) Second Proof. Let ABC (Fig. 34) be a spherical triangle and

O the center of the sphere on which the triangle lies. Draw the radii

OA, OB, OC. From C draw CD perpendicular to the plane of AOB
and through CD draw planes CDE and CDF perpendicular to OA
and OB respectively. Then each of the triangles, OEC, CDE, CDF,
OFC, is right-angled, the middle letter being in each case at the right

angle. Also since CF and DP are perpendicular to OB, angle CFD
is equal to the angle B, and similarly angle CED is equal to the angle

A.

Now CD = CE sin CED = CE sin A,

and CD = CF sin CFD = CF sin B,

CE = OC sin C07t = OC sin b,

CF = OC sin COF = OC sin a.

Therefore, substituting in the first two

equations for CR and CF their values

Fig. 34- from the last two, we have

OC sin b sin A = OC sin a sin B,
from which

sin a/sin ^L = sin ft/sin .#.

25. The Law of Cosines, (a) First Proof. In Figs. 32 and 33
let us denote AD and DB by w and 7* respectively. By applying

Napier's rules, or the formulas of Art. 13, we find

from triangle BCD cos a cos p cos n,

and from triangle ACD cos b cos p cos w.

Now n = c m(B acute), or n = w c (B obtuse),

and since cos (c m) = cos (m c), we have in either case on elimi-

nating cos p and putting for n its value

cos a = cos b cos (c w)/cos m
. cos c cos m + sin c sin w= cos b

cos m
= cos b cos c + cos b sin c tan w.
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But by Napier's rules tan m tan b cos A, hence substituting this

value in the last equation and remembering that cos b tan b = sin b,

we have

cos a = cos 6 cos c + sin & sin c cos A.

Advancing letters, cos b = cos c cos a+ sin c sin a cos -B,

cos c = cos a cos &+ sin a sin & cos C.

These formulas embody the Law of Cosines: The cosine of any side of

a spherical triangle is equal to the product of the cosines of the other two

sides plus the continued product of the sines of these two sides and the

cosine of the included angle.

(2)

Fig 33-

(b) Second Proof. In Fig. 34 draw EG parallel to DF and D1I

perpendicular to EG
f
then angle DEH equals angle AOB or c, and we

have

IID IID DE CE

IID OF OG OF OG OE

Equating these two values of IID/OC and solving for cos a we find

cos a = cos b cos c + sin b sin c cos A.

26. Relation Between Two Angles and Three Sides.

The second of the equations (2) may be written

cos c cos a + sin c sin a cos B cos 6,

and the first multiplied by cos c gives

cos c cos a = cos b cos2 c + sin b sin c cos c cos A .

Subtracting the second of these equations from the first gives

sin c sin a cos B = cos b (i cos2 c) sin b sin c cos c cos A.
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Now i cos2 c = sin2 c, hence we may divide the equation by sin c
9

and obtain

sin a cos B = cos b sin c sin b cos c cos A.

Similarly, sin a cos C = cos c sin b sin c cos & cos A.

sin &cos C = cos csina sinccosacos^
sin b cos A = cos a sin c sin a cos c cos B,
sin c cos ^4 cos a sin & sin a cos & cos C9

sin c cos B = cos & sin a sin & cos a cos C.

(3)

27. Third Proof of the Fundamental Formulas. The three

equations (i) Art. 24, (2) Art. 25, and (3) Art. 26, may be derived

simultaneously by the method of analytical geometry.* Let ABC be

any spherical triangle. Take O, the center of

the sphere, for the origin of a system of rec-

tangular coordinates, the plane of BOA for

the :ry-plane, OB for the direction of the x-

axis, and the positive s-axis on the same side

of the plane BOA as the vertex C. Join O
and C. From C drop the perpendicular CR
on BOY, and through CR pass a plane per-

pendicular to OB cutting OB in S. Then the

triangles CRS and CSO have right angles at R and S respectively,

and angle RSC equals angle B (why?). Denoting the coordinates of

C by x, y, z and the distance OC by r, we have

OS = OC cos COS, or x = r cos a,

RS = SC cos RSC OC sin COS cos RSC, or y r sin a cos .#,

#C = SC sin &SC = OC sin COS sin &SC, or c = r sin a sin #.

Fig. 35-

If O/l had been taken for the a:-axis, the s-axis remaining unchanged,
A and a will change places with B and b respectively, and the y co-

ordinates will have opposite signs, so that the new coordinates #', y' 9

z' of C will be

x' = r cos b, y'
= r sin b cos A, z' r sin b sin J .

But these are the transformed coordinates of a system having the same

2-axis while the x- and y-axes are each turned through an angle c
y

* The student without some knowledge of analytical geometry must content

himself with the proofs given in the preceding articles and those suggested in the

exercises which follow.
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hence the coordinates #, y, z and #', /, z' are related by the trans-

formation formulas,

z = z', x = x
r

cos c y' sin c, y = x' sin c + y
f

cos c.

Substituting in these three formulas the values of x, y, z, x', y', z
f

in

terms of r and the parts of the triangle, we have, after dividing out r,

sin a sin B = sin b sin A9 (i)

cos a = cos 6 cos c + sin 6 sin c cos^ (2)

sin a cos J5 = cos b sin c sin 6 cos c cos ^4. (3)

28. Fundamental Relations for the Polar Triangle. If we

apply the formulas (i), (2), (3) to the polar triangle, by putting a =
180 A', A = 180 a', etc. (Art. 7), and then drop the accents,

we find that (i) remains unchanged, while (2) and (3) give rise to the

new sets of formulas:

cos A = cos B cos C + sin B sin C cos a,

cos B = cos C cos ^ + sin C sin A cos &,

cos C = cos A cos B + sin ^i sin B cos c,

and sin A cos & = cos B sin C + sin B cos C cos r?,

sin A cos c = cos C sin ^ + sin C cos J5 cos a,

sin J* cos c = cos C sin ./i + sin C cos JL cos &,

sin /? cos a = cos ^1 sin C + sin -4 cos C cos &,

sin C cos a = cos ^4 sin jB + sin ^ cos B cos c,

sin C cos & = cos B sin .4 + sin B cos -4. cos c.

(4)

(5)

29. Arithmetic Solution of Spherical Triangles. The funda-

mental relations d), (2), (3) enable us to solve every case of oblique

spherical triangles.

Case I. Given the three sides, a, 6, c.

1. The angle A may be found by the law of cosines.

2. The angles B and C may then be found by the law of sines.

Case III. Given two sides and the included angle, a, b, C.

1. The third side may be found by the law of cosines.

2. The angles A and B may then be found by the law of sines.

Case V. Given two sides and the angle opposite one of them, a, b, A.

1. The angle B may be found by the law of sines.

2. The third side might be found by the law of cosines but since the

law of cosines involves both sin c and cos c the formula solved for
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either sin c or cos c would involve radical expressions. These may be

avoided by using the formula

cos a cos b sin a sin b cos A cos B
cose

i sin26 sinM

which is obtained by eliminating sin c from the formulas (2) and (3)

of Art. 27.

3. The angle C may now be found by the law of sines.

Cases II, IV, VI. These may be referred to Cases I, III, V, re-

spectively, by making use of the polar triangle, or we may apply
formulas (i), (4), (5).

While the fundamental relations (i), (2), (3) make it possible to

solve each of the six cases of triangles, it is clear that (2) and (3) are

not adapted to logarithmic computation. Therefore, in order to

facilitate computation, it is desirable to obtain other formulas which

enable us to use logarithms. Such formulas will be developed in the

following articles.

EXERCISE 7

1. If a', b'j c
f

denote the sides of the polar triangle, show that

sin a : sin b : sin c = sin a' : sin b' : sin c'.

2. If m is the arc joining the vertex C of a spherical triangle to the

middle point of the opposite side, show that

cos a + cos b = 2 cos m cos \ c.

3. If the bisector of the angle C meets the opposite side in Z>, show

that

: sin b = sin BD : sin AD.sin a ;

4. State in words the laws expressed

by formulas (4) and (5), Art. 28.

5. In Fig. 36 let EGF be the triangle

in which a plane drawn perpendicular to

IB an edge OA intersects the trihedral angle.

Then

Fig. 36. GF2 = EF2 + EG2 - 2 EF EG cos .4 .

= OE2
,Subtracting and observing that OF2 - EF2 = OE2

,
OG2 - EG2

we find

2 OF OG cos a = 2 OE2 + 2 EF EG cos A ,
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which, on dividing by 2 OF OG
t
leads to

cos a cos b cos c + sin b sin c cos A.

This constitutes &fourth proof of the law of cosines.

6. From the law of cosines

cos A = (cos a cos b cos c)/sin b sin c,

show that

sin2 A _ i cos2 A _ i cos2 a cos2 b cos2 + 2 cos g cos 6 cos c

sin2 a sin2 a sin2 a sin2 b sin2 c

The expression on the right is symmetrical in a, b, and c, hence

sin 2 /! sin
2 J5 sin 2 C r

, . , sin A sin B sin C"
9 from which
2-T-; -.TT 9 .

sin2 a sin2 & sin2 c sin a sin b sin c

This constitutes & fourth proof of the law of sines.

J. Prove the relation

cot a sin b cot A sin C + cos C cos b.

Suggestion. Multiply the third of the equations (2), Art. 25, by
cos b, substitute in the first equation and divide by sin b sin c.

8. By interchanging and advancing letters write down five other

equations like that in Problem 7.

9. Apply the Delations of Problems 7 and 8 to the polar triangle.

Do the resulting equations express new relations?

10. Given b 135, c = 45, A = 60; find the remaining parts

to the nearest degree.

Ans. a 104, B = 141, C = 39.

11. Given a = 120, b = 60, A = 135; find the remaining parts

to the nearest minute.

Ans. B = 45 oo', c = 78 28', C =
53 08'.

12. Given a 135, b 135, c = 45; find A, B, C, to the nearest

minute. Ans. A B = 114 28', C =
65 32'.

30. Functions of Half the Angles in Terms of the Sides.

From the law of cosines

. cos a cos b cos c . , . /rr. AX \
cos ,4 =-rr-.- =1-2 sina i-4, (PL Trig., Art. in)sm b sm c

therefore

A cos a cos b cos c cos (b c) cos a
A = i-- r-- =-

.

'-
sin b sm c sm bsmc
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Now
cos (6 c) cosa=2sin J (a+fcc) sinj (a b+c) (PI. Trig., Art. 113)

= 2 sin (s c) sin (s b), where 5 = \ (a + b + c),

therefore

2 sin (s b) sin (s c)

sin b sin c
2 sin2 J A = ;

or

. ,

Sin s -
53

A /si= \/V
sin (s b) sin (s c)

: :

sin b sin c

o- -, , . i ^ /sin (* c) sin (s a)
Similarly, smiB = \/-- r-^ r --->J ' 2 V sni c sm a

sin 5 C - /sin (g a) sin (.s b) m~
V sin a sin &

(6)

Corresponding formulas for the cosines of half the angles may be

obtained by applying the formulas (6) to the co-lunar triangles. Thus

by applying the first formula to the co-lunar triangle AB'C whose

parts are (Art. 5) 180 - A, B, 180 -
f, 180 -

a, b, 180 -
c,

we obtain

Similarly,

To find tan J -4 we divide sin |

. , tanA-
tan |^1 = -

7
r^2 sm (^ )

, ^ tanA-
tan|-B= -.

, w8 sm (.s 6)

, tan /?

tan i C =
. ,

>2 sm (* c)

(7)

by cos | ^4 and obtain

where tan ft
sin ( a) sin (s 6) sin (s c)

sin s

(8)

is the arcual radius of the small circle inscribed in the triangle

ABC, for if (Fig. 37) represents the intersection of the arcs bisect-
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ing the angles of the triangle, OF, the arc drawn from O perpendicular

to one of the sides as AB, will be the arcual

radius of the inscribed circle. It follows, just as

in the case of plane triangles (PL Trig., Art. 68),

that AF s a, hence denoting OF by k and

applying Napier's rules to the right triangle AOF,
we have

sin (s a) cot f A tan k,

or tan \ A = tan k/sm (s a). Fig. 37-

31. Functions of Half the Sides in Terms of the Angles. If

we apply the formulas (6) and (7), Art. 30, to the polar triangle

(Art. 7), by putting A = 180 -
a', a = 180 -

A', B = 180 -
b',

etc., dropping the accents in the final results, we obtain

- /

V
cos S cos (S

sin c

sn

sn c
cos ~S cos (S C)

sin ^ sin B

(9)

sin

cos i b = /cos QS -O) cos QS -.4)
2 \ sin C sin ^1

COS c =

(10)

= \(A

From (9) and (10) we find

tan \ a = tan K cos (8 A),

tan g &
= tan K cos ( &),

tan | c = tan if cos (5 C),

where

//\o

C).

tan
cos S____

cos (s - A) cos (s - B) cos (s - C')

(II)
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K is the arcual radius of the small circle circumscribed about the

triangle ABC, for if (Fig. 38) is the center of this circle, OA, OB,
OC the arcs joining the center to the vertices of

the triangle, OF the perpendicular arc from to

one of the sides as BC, then OA = OB = OC = K,
the triangles AOB, BOC

y
COA are isosceles, and

BF = PC = i a. Furthermore

A = BAO + OAC = ABO + ACO = (B - OBF)
+ (C

- OC/0 = + C -

= i (B + C - A) = 5 - A,

S = \(A + J5 + C).

If now we apply Napier's rules to the right triangle BOF, we find

cos OBF = cot BO tan BF

or cos OS A) cot A" tan 3 0,

from which tan J a = tan cos (S A).

EXERCISE 8

1. Prove the formula for sin C (Art. 30) directly by using the

relation

_ o i /^ c s c cos a cos b
cos C i 2 sm2

J C = - --.7--
sin a sm 6

2. Prove the formula for cos \ A (Art. 30) directly by using the

relation

. .. . cos a cos b cos c
cos A = 2 cos2 ^ A i = -- ;

-
-.

---
.

sin b sm c

and following the method used in deriving the formula for sin J A.

3. Prove the formula for sin \ a (Art. 31) directly by using the

relation

cos A + cos B cos C
cos a i 2 sin2 \ a

sin B sin C

4. Prove the formula for cos J a (Art. 31) directly by using the

relation

. , cos A + cos B cos C
cos* = a *Ja- i = -
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5. Derive the formula for tan \ a (Art. 31) by applying the formula

for tan ^ A (Art. 30) to the polar triangle.

6. Derive the formula for cos^A by applying the formula for

sin \ A to the co-lunar triangle ABC'.

7. Apply the formula for sin^ to the co-lunar triangle A'BC.

Does the resulting formula express a new relation?

8. The escribed circles of the triangle ABC are the small circles

inscribed in the co-lunar triangles A'BC, AB'C, ABC'. By applying-

the formula for tan k (Art. 30) to these triangles, show that the arcual

radii, ka , kb, kc of the escribed circles are given by the formulas

. /sin 5 sin (s b) sin (s c] . , .

tan ka = V/ . .

' = sin 5 tan \ A ,V sm (s a)

tan h = sin s tan \ B, tan kc
= sin s tan \ C.

9. By applying the formula for tan K (Art. 31) to the co-lunar tri-

angle A'BC, show that the arcual radius of the circle circumscribing

this triangle is given by the formula

tan KA = v ^ ,V.~ TTT TT, 7 ,v
= ~~ tan \ a/cos S

1

,A V cos .S cos (S ) cos (6 C )

hence also tan KB = tan \ ft/cos S, tan KC tan \ c/cos 5.

10. Show that

2 tan K cot ka + cot kb + cot kc cot /?,

and 2 cot & = tan KA + tan A'# + tan KC tan K.

32. Delambre's (or Gauss's) Proportions. By PL Trig., Art.

106, we have

sin \ (A + B) = sin \A cos \ B + cos J A sin \ B.

Substituting for sin | A, cos \ B, cos \ A, sin B, their values from

(6) and (7), Art. 30,

. , f 4 . . 4 /sin (s b) sin (s c) sin 5 sin (.s )sm f (A + jft)
= v . ; = .-

sm a sin 6 sm2 c

sin 5 sin (s a) sin (s c) sin (5 a)

sin a sin sin2 c

sin 5 sin (s c) sin (5 b) -j- sin (5 a)

sin a sin b sin c

, ^ sin (s b) + sin (s a)
: COS i (, B

.

sine
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Also by PL Trig., Art. in, 113,

sin (s b) + sin (s a)
= 2 sin %(s b + s a) cos? (s b s+ a)
= 2 sin

-2
c cos J(0 b),

and sin c 2 sin | c cos \ c
y

hence

sin (5 b) + sin (.9 a] cos ^ (a b)

cos |

and sin * B) =
COS \C

(12)

Similarly, we obtain corresponding formulas for cos J (A + B),

sin | (A /?) and cos \ (A B). The four formulas, of which the

third and fourth may also be obtained by applying the first and sec-

ond to either one of the co-lunar triangles A'BC or AB fC } may be

written

sin | (A + U) cos | c = cos | (a b) cos | C,

cos \(A+ B) cos | c = cos ( + &) sin | C,

sin %(A K) sin^c = sin | (a b) cos | (7,

cos | (^1 1J) sin | c = sin | (a + 6) sin | C.

These formulas are known as Dclambre's or Gauss's proportions or

equations.

33. Napier's Proportions. If of the equations (12) we divide the

first by the second, then the third by the fourth, then the fourth by
the second, and finally the third by the first, we obtain the following

four new formulas which are known as Napier's proportions or anal-

ogies.

tan | (a + b)

tan B ( &)

- B]I_
COS I (A +JBJ

(13)

The second of these formulas may also be obtained by applying the

first to either of the co-lunar triangles A'BC or AB'C, and the third

and fourth by applying the first and second to the polar triangle.
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If we divide the first of the equations (13) by the second, or the

third by the fourth, we obtain the law of tangents

tan | (fi + ft) ^ tan|_U +j*) ^

tan | (
-

6)

~
tan | (A ~^~li)

'

34. Formulas for the Area of a Spherical Triangle. It is

shown in Solid Geometry that the area of a spherical triangle is given

by the formula

IT J?
2 E , .

where R is the radius of the sphere, and E the Spherical Excess

expressed in degrees, that is E = A + B + C 180.

If E is the spherical excess expressed in radians, E = 7r/i8o, and

(14) becomes T= 7 S
JE. (15)

For a unit sphere (R = i) T = J, (16)

hence we have

Theorem I. The area of a spherical triangle on a unit sphere is equal

to the spherical excess expressed in radians.

Theorem IT. The area of a spherical triangle on any sphere is equal

to the area of the corresponding triangle on a unit sphere multiplied by

the square of the radius,

The problem of finding various expressions for the area of a spheri-

cal triangle resolves itself, therefore, into the problem of finding

various expressions for the spherical excess E.

(a) In terms of the angles, A , B, C.

J0=2 IT, where >S = \ (A+ B + C). (17)

(b) In terms of the sides
} a, b, c.

We have

sin | E = sin (S
- K) = sin [J (A + B) + i (C - TT)]

= sinj 04 + B) sin J C - cos (A + B) cos]- C.

Substituting for sin J (A + B) and cos \ (A + B) their values from

(12), we have

. i ,_, sin 2 Cx cos o" C r i / TX i / i IMsm J = --
3-

^
[cos % (a b) cos (a + b)]

COS
jj
C

sin \ C cos | C , ., . i , x
a- ^-- ^

(2 sin J a sin J o).
cosfc

z
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Finally by putting for sin | C and cos J C their values from (6) and (7)

we arrive at

Cagnoli's Formula,

sin IE = ---
i
----* -.---1- , (18)8 2 COS | a COS | 6 COS I C

where n Vsin * sin ( ) sin ( />) sin (* c)

Or we may proceed as follows: \ (C E) \ TT \ (A + B) t

and therefore, sin \ (C E) = cos \ (A + B).

This value substituted in the second of the equations (12) gives

sin
-J (C E) : sin I C = cos \ (a + #) : cos ^ c.

From this proportion we have by division and composition

sin \ Cj sin \ (C E) _ cos % c cos | (g + &)

sin 2 C + sin 2 (C E) cos J f + cos \ (a + b)

On reducing each member of this equation by means of the relations,

of Art. 113 (PL Trig.), we obtain

tan I E cot \ (2 C - E) = tan | s tan \ (s
-

r) ;

In like manner, by substituting cos 2 (C E) = sin | (. 1 -f- -ZJ) in the

first of the equations (12), we find

tan { E tan \ (2 C - E) = tan J (5
- a) tan

.J (5
-

b) ;

hence on multiplying these two equations and extracting the square-

root we obtain

Lhuilicr's Formula,

tan J K = Vfan | n tan (*
-

) tan~| (s
- b) fan | (* - V) . (19)

(c) In terms of two sides and the included angle, a, b, C.

l sin(5~ ^TT)
- cos \ (A + B + C)

*
cos (5

-
-J TT) sin 2 (J + B + C)

= sin 2 U + 7?) sin I C - cos 2 Ql + ffl cos^- C
sin

J- (.4 +" ) cos
-

2
: C + cos | (.-1 + B) sin J C

*

Substituting for sin \ (A + B) and cos J (.4 + J5) their values from

(12), we have

sinj C cos J CJcos | (g
-

6) -cosj (a + 6)],a '
- - 2cos 2 JC + cos $(a + b) sin

2
J C

'
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which readily reduces to

tan | E =
tan | a tan J b sin C

i + tan J a tan J& cose"

47

(20)

35. Plane and Spherical Triangle Formulas Compared.
The student will have observed that there is a striking resemblance

between the formulas relating to plane triangles and certain of the

formulas of the present chapter. In the table below are arranged
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in parallel columns the more important formulas for plane triangles

and the corresponding formulas for spherical triangles. The form of

some of the formulas for plane triangles has been slightly changed in

order to manifest the resemblance in the most striking manner.

36. Derivation of Formulas for Plane Triangles from Those
of Spherical Triangles. We will now show that the resemblance

between the two sets of formulas is not accidental but is due to a

definite relation between plane and spherical triangles. If the vertices

of a spherical triangle remain fixed while the radius (r) of the sphere
on which the triangle is situated is indefinitely increased, the spherical

triangle will approach as a limit the plane triangle having the same

vertices. Consequently, for the limit r = oo, the formulas for the

spherical triangle must reduce to those for the plane triangle.

Let a'j b', c
r

represent the sides of the spherical triangle expressed

in radians, then a' a/r, b' b/r, c' = c/r, where a, b, c repre-

sent the actual lengths of the sides (PL Trig., Art. 90). Also by PL

Trig., Art. 176, we have

, a a5
. ^ ,

a 2
. a4

sin a ^ " -
i + etc., cos a = i - -

, /2
+ --^

-
etc.,

a n3

tan a + , + etc.
r 3 r

and similar expressions for sin b', sin c', etc.

These expansions involve the radius of the sphere. If now we
substitute these expansions in any formula relating to spherical tri-

angles and evaluate the resulting expression for r oo, the resulting

formula will express the corresponding relation between the sides and

angles of the plane triangle. We will illustrate the method by some

examples.

(a) The Law of Sines.

sin_/l _ sin_a' _ sin a/r_ _ _ _ __

sin B sin b' sin b/r b b*~

Multiplying both numerator and denominator of the expression on

the right by r, and making r infinite, we obtain

-r r,
= T , the law of sines for plane triangles.smx>
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(b) The Law of Cosines.

cos a' cos b
f

cos c
f + sin b

f
sin c' cos A

a b c . . b . c ,

or cos - = cos - cos - + sm - sm - cos A
,

hence

a2
. a 4 / ft

2 V

If we multiply both sides of the equation by 2r2
, drop the terms

which are common to both sides of the equation, and then make r

infinite, we have

02 _. 2
_j_ c

z _ 2 fo cos ^4
^
^ne iaw Of cosines for plane triangles.

(c) The Law of Tangents.

a + b a + b (fl + ft)

tani U + ^) _ lanj (a' + ft') _ 2r _ 2 r
"^

3(2 r)

"

Multiplying both numerator and denominator on the right by 2r and

making r infinite, we have

tan J (A + B) a + b

J-;A-^T>\
'

^-j.
9
tnc *aw f tangents for ])lane triangles.

(d) Area of a Triangle. As a final example we will deduce Hero's

formula for the area of a plane triangle from Lhuillier's formula for

the spherical excess.

Denote a' + b' + c' by 2s'
',
then s

f =
s/r, s' - a' = (s

-
a)/rt

s
f

b' = (5* ft)/r, etc., and we have from Lhuillier's formula

i \

Multiplying through by ^r
2
gives
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Now as r approaches infinity, E approaches o, r*E remains equal to

the area of the triangle, hence in the limit

rzE =T= Vs (s
-

a) (s -b)(s- c)

which is Hero's formula.

EXERCISE 9

1. Derive the second of the formulas (12).

2. Derive the third and fourth of the formulas (12) by applying

the first and second to the co-lunar triangle AB'C.

3. Derive the fourth of the formulas (13) by applying the third to

the co-lunar triangle AB'C.

4. Derive the fourth of the formulas (13) by applying the second

to the polar triangle.

5. Show that the area of the co-lunar triangle A'BC, AB'C, ABC' is

r\2 A -
E), r\2 B -

E), r\2 C -
E), respectively, where E is the

spherical excess of the triangle ABC.
6. Prove that

sin(s a) -\- sinO? b) + sin (5 r) sin 5 = 4 sin \a sin \b sin %c.

7. If 5, SA , SB, Sc denote half the sums of the angles of a triangle

and its three co-lunars respectively, prove that

8. If E, EA) EB, EC denote the spherical excesses of a triangle and

its three co-lunars respectively, show that E + EA -f- EB H- EC 2 TT,

and hence that the sum of the area of these triangles is equal to half

the area of the sphere.

9. Deduce the double formula for plane triangles from Delambre's

formulas for spherical triangles.

10. Deduce the half-angle formulas for plane triangles from the

corresponding formulas for spherical triangles.

1 1 . From the formula cos c = cos a cos b for right spherical tri-

angles deduce the formula c
2 = a2

-f- 62 for plane right triangles.

12. If A", KA , KB, KC denote the arcual radii of a triangle and its

three co-lunars, show that tan K cot KA cot KB cot KC cos25.



CHAPTER IV

SOLUTION OF OBLIQUE SPHERICAL TRIANGLES

37. Preliminary Observations. In Art. 23 it was shown that

every spherical triangle may be solved by the method of right triangles.

Again every spherical triangle may be solved by means of the funda-

mental relations of Art. 27, as was shown in Art. 29. The purpose of

the present chapter is to present the most approved methods, which,

though based on apparently more complicated formulas, require, as

a rule, the least possible amount of computation, and are, therefore,

commonly employed by computers.

The computer will do well to observe the following points:

(a) The arrangement of the work should be orderly and methodi-

cal. A complete schedule for the tabular work should be made out

before the tables are used (PL Trig., Art. 70).

(b) It will bo well to letter the given parts as in the illustrations

which follow. Thus if the given parts are two sides and the included

angle, call the larger of the two sides a, the other #, and the angle C.

This is easier than to rewrite the formulas so as to involve other

letters.

(c) Remember that a small angle cannot be accurately found from

its cosine, nor an angle near 90 from its sine. (PL Trig., Art. 21.)

Usually there is a choice of formulas which will enable us to avoid

any inaccuracies arising from this source.

(J) Remember also that the answer cannot be more accurate than

the least accurate of the given parts. It is a false show of accuracy

to compute the answer to the nearest second when one or more of the

given parts have a lesser accuracy. (PL Trig., Art. 44, 19.)

(e) No result can be relied upon unless it has been checked. When
the answer is given, that may be looked upon as a check, in all other

cases the computer must provide a check of his own.

38. Case I. Given the Three Sides, a, b, c.

Solution.

1. To find A,B,C. Use the half-angle formulas (8).

2. Check. Use the law of sines.

Note. If one angle only is required it is better to use (6) or (7).
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EXAMPLE.

Given

a = 1 23 34' 45",

*= 75 56' 33",

c - 105 oo' 18".

Solution.

i. To find .4, B, and C.

Fig- 39-

- .

tanf .4 =-T*

tank
-T

7
-

:,
siu (5 a)

^ , _ tanfc
tan j-

J5 = - -
i-r

,*
sin (A 6)

To find

= i2i 32' 41",

= 82 52' 53",

= 98 Si' 55".

^ * tan k
tan J C = - r

tanfe=V 0) sin (5 b) sin (5 c)

a = 123 34' 45
'

b= 75 56' 33"
c = 105 oo' 18"

2s = 304 3 1
7

36"

5 - a = 28 41' 03"
5 - b = 76 K/ 15"

o
5 - c = 47

25= 152 15' 48" (check)

\A = 60 46' 20. 7"

i .
= 41 26' 26.4"

log sin (5 0)
=

9.68122

log sin (5 &)
=

9.98751

log sin (5 c) 9.86594

colog sin 5 = 0.33 215

log tan2& = 9^86082

log tan k =
9.93341

log tanj A =
0.25219

log tan | B =
9.94590

log tan \C 0.06747

-1 = I2I32'4l",
B= 82 52' 53",

C- 93 5i' 55".

2. Check.

log sin a = 9.92071

log sin ^4 = 9.03056

9.99015

sin a sin

sin A sin B sin C"

log sin b 9.98680 log sin c 9.98493

log sin B = Q.QQ664 log sin C = 9.99478

9.99016 9.99015

EXERCISE 10

Solve the following oblique triangles:

i. Given a = 72 16', b = 80 44', c = 41 18'.

Ans. A = 73 38', B - 96 12', C = 41 40'.
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2. Given a = 109 45', b = 73 56', c = 54 32'.

3. Given a = 105 06.8', b = 93 39.9', c = 50 20.3'.

Ans. A = io63S.o', B = 82 04.4', C = 49 49.2'.

4. Given a = 27 43.8', b = 49 36.8', c = 55 19.7'.

5. Given a = 120 22' 40" ft
= 111 34' 27", c = 96 28' 35".

Ans. A = 126 18' 42", B = 119 42' 08", C = 111 51' 42".

6. Given a = 20 45' 23", b = 55 56' 56", c = 67 25' 54".

7. Given a =
131 35' 04", & = 108 30' 14", c = 84 46' 34",

,4 = 132 14' 21". Find B and C.

8. Given a = 35 30' 24", b = 38 57' 12", r = 56 15' 43".

Find B = 47 37' 21".

39. Case II. Given the Three Angles, A, B, C.

Solution.

1. To find a, ft,
r. Use the half-angle formula (u).

2. Check. Use the law of sines.

Note. If one side only is required it is better to use (9) or (10).

EXAMPLE.
4

Given To find

A = 121 32' 41", a= 123 34' 46",

B= 82 52' 53-, ft- 75 50' 32",

C = 98 51' 55". c = 105 oo' 18".

Solution.

i. To find a, b, c.

tan J a tan cos (S /I), tan | b tan A' cos (5 J5),

tan J c tan A' cos (S C),

_ _____

A - 121 32' 41"

B= 82 52' 53" 5-4= 30 06' 03.5"

C =
_Q8V'_5^'

S-B- 68 45' 51.5"

2 5 =
303 17' 29" 5 - C =

5 2 46U9.5
//

5 =
151 38' 44-5" 5 =

151 38' 44.5" (check)
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log(- cosS) =
9-9445

log cos (S A) =
9.93709 colog cos (S A) =

0.06291

log cos (5 B) = 9.55896 colog cos (5 B) = 0.44104

log cos (S C) =
9.78166 colog cos (S C) =

0.21834

log tan2X =
0.66679

log tan K = 0.33340 log tan K =
0.33340

log tan \ a 0.27049 \ a 61 47' 23"

log tan \ b = 9.89236
i & = 37 58

r

16"

log tan | c = 0.11506 I c =
5 2 3' 09"

a = 123 34' 46", b = 75 56' 32", c = 105 oo' 18".

2. Check.
sin .4

__
sin B _ sin C

sin a sin 6 sin c

log sin /I = 9.93056 log sin B =
9.99664 log sin C = 9.99478

log sin a = 9-9_2^7i log sin b 9-98680 log sin c 9.98403

0.00985 0.00984 0.00985

Note. Since the sum of the angles of a spherical triangle is always
between 180 and 540, 5 is necessarily between 90 and 270, hence,

cos 5 is always negative and cos S positive.

EXERCISE n
Solve the following triangles:

1. Given A = 74 40', B 67 30', C = 49 50'.

Ans. a = 43 36', b = 41 21', c = 33 07'.

2. Given A = 125 54', B =
55 35', C =

45 05'.

3. Given A = 46 59-3', B - 122 32.6', C = 139 00.3'.

Ans. a = 59 27.4', b 117 06.2', c = 123 20.0'.

4. Given A = 47 34-6', B = 74 54-7', C =
77 24.5'.

5. Given A = 59 55' 10", B = 85 36' 50", C =
59 55' 10".

Ans. a = 51 17' 31", b = 64 02' 47", c = 51 i?' 31"-

6. Given A = 109 35' 56", B = 111 23' 06", C = 86 49' 19".

7. Given ^1 = 15 38' 06", B - 16 06' 22", C = 159 44' 26".

Find b. Ans. b = 52 05' 54".

8. Given A = 50 45' 23", B = 58 01' 10", C = 87 if oo".

Find C.
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40. Case III. Given Two Sides and the Included Angle,

a, b, C.

Solution.

i. To find A and B. First find } (A + B) and J ( A - B) by the

first two of Napier's proportions (Art. 33), then

2. To find c. Use either one of Delambre's proportions (Art. 32).

3. Check. Use the law of sines (Art. 24).

EXAMPLE.

Given

a = 1 10 30' 24",

b= 36 4/36",
C =

135 12' 12".

Solution.

i. To find A and B.

To find

'1= 63 57' 39",

B= 35 04' 03",

c- 132 44' 08".

Fig. 40.

1 / A T>\ sin % (a b) i ~
tan -3 (A B) = ~~f-^ --( cot I C*2 '

sin \ (a + b)

i (a
-

A)
= 36 5i' 24", i (a + 6)

=
73 39' oo", J C = 67 36' 06"

log cos I (a b) 9.90316 log sin -J (a b) 9.77802

colog cos ^ (a + Z>)
= 0.55052 colog sin \ (a + b)

= 0.01793

log cot | C = 9.61504 log cot C = 9.61504

log tan % (A + B) = 0.06872 log tan \ (A B) 9.41099

,1=63 5/39". 35 04' 03".

2. To find c.

cos J (a b)

log cos J (a b)
= 9.90316

colog sin \ (A+B) = 0.11886

log cos | C = 9.58098

log cos | c = 9.60300

3. Check.

sin a _ sin b

sin A
sine

sinC

log sin a = 9.97157

log sin A =
9-953S 2

0.01805
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log sin b = 9.77738

| c = 66 22' 04" log sin 5 =
9.75932

c= 132 44' 08". 0.01806

log sin c = 9.86598

log sin C = 9.84794

0.01804

We might have found c from the third or fourth of Napier's propor-
tions but this would have required us to look up one more logarithm.

EXERCISE 12

Solve the following oblique triangles:

1. Given a 140 38', b = 130 28', C = 150 34'.

Ans. A = 161 47', B =
157 58', c = 85 20'.

2. Given a = 103 44', b = 64 12', C = 98 33'.

3. Given a = 156 12.2', b = 112 48.6', C = 76 32.4'.

Ans. A = 154 04.1', B = 87 27.1', c = 63 48.8'.

4. Given a = 27 45.5', b = 22 56.7', C -
156 15.9'.

5. Given a = 88 12' 20", ft = 124 07' 17", C =
50 02' 02".

Ans. A = 63 15' 10", B = 132 17' 59", ' = 59 04' 25".

6. Given a = 1-11 n' 12", b = 137 56' 56", C =
23 15' 48".

7. Given & = 68 12' 58", = 80 14' 41", ^ = 17 20' 54".

Ans. B =
52 05' 54", C = 123 07' 37", a = 20 32' 33".

8. Given a = 56 56' 56", c = 156 56' 56", # = 94 45' 45"-

41. Case IV. Given Two Angles and the Included Side,

A, B, c.

Solution.

1. To find a and b. First find J (a + V) and \ (a
-

b) by the last

two of Napier's proportions (Art. 33), then

a = \(a + b) + -| (a
-

b), b = i (a + 6)
-

J (a
-

ft).

2. To find c. Use either one of Delambre's proportions (Art. 32).

3. Check. Use the law of sines.

EXAMPLE.
Given To find

A= 63 5/39", a =110 30' 23",

B= 35 04' 03", 6= 36 4/37",
c= 132 44' 08". C =

135 12' 15".
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Solution.

i. To find a and b.

i / TX sin i C'l
ton H*-*)-

i
(4
- B) = 14 26' 48", %(A + B) = 49 3o' 5i", i c = 66 22' 04".

log cos ^ (A B) 9.98605 log sin \ (A B) 9.39702

colog cos J (A + B) = 0.18758 colog sin J (.4 + 2*)
=

0.11887

log tan I c = 0.35896 log tan \c = 0.35896

log tan % (a + b)
= 0.53259 log tan J (a

-
b) = 0.87485

%(a+b) =
73 39' oo" J (a

-
b) = 36 51' 23"

a =110 30' 23". b = 36 47' 37".

2. To find C. 3. Check.

,
_ sin J (vl

-
cos f C = .--^^

) .
j

sinyl _ sin# _ sinC
i / 7 v.

sin o c. ~~.
~

p ~~~.
*

sin | (a b) sin a sin ft sin c

log sin | (A B) 9.39702 log sin A 9.95352

colog sin ^ (a ft)
= 0.22199 log sin a =

0-07*57

log sin.^ c 9.96106 9.08195

log cos \ C = 9-58097 log sin B =
9-75Q3 2

\C =
67 36' 07.7" log sin ft

=
0.77738

C =
135 12' 15" 9.08194

log sin C =
9.84793

log sin c = 9.86598

9.98195

EXERCISE 13

Solve the following triangles:

1. Given A = 67 30', B = 45 50', c = 74 20'.

Ans. a = 63 15', ft = 53 46', C -
52 27'.

2. Given A 126 45', B 49 52', c = 80 01'.

3. Given B 140 43.2', C = 100 04.6', a = 60 43.6'.

Ans. ft
=

145 55.2', c = 119 22.6', J = 80 14.8'.

4. Given C = 139 25.8', A =
13 56.9', ft = 29 00.8'.

5. Given A = 153 17' 06", 5 = 78 43' 32", c = 86 15' 15".

Ans. a = 88 12' 19", ft
= 78 15' 4i", C = 152 43' 52".

6. Given a = 50 34' 56", B = 124 10' TO", C = 83 25' 25".
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42. Case V. Given Two Sides and the Angle Opposite One
of Them, a, b, A.

In this case there may be two solutions (see Art. u).

sin b sin A
i. To find B. Use the law of sines, sin B =

sin a

Since B is found from its sine it will in general have two values whose

. _ . sin b sin A < .. . . . A ^ .

sum is 180 . sin B -:
- =

i, according as sin b sin A == sin a,
sin a =* ft =* '

hence B has two values, one value (90), or no real value, according as

sin b sin A = sin a.

2. To find C. From the second of Napier's proportions

tanlC- ^ii'TScotiU-g).sin J (a + b)

Since C is less than 180, tan | C must be positive. Now a + b is

always less than 360, therefore sin J (a + b) is always positive,

hence in order that tan | C may be positive sin ^ (a b) and cot

% (vl B) must have like signs. Now J (a b) and ^ (^L .#) are

each numerically less than c;o, hence in order that sin J (a b) and

cot J (.1 J5) may have like signs, \ (a b) and | (vl .#) and

consequently a b and /I B must have like signs. If both values

of B satisfy this condition there are two solutions, if only one value

of B satisfies this condition there is only one solution, if neither

value of B satisfies this condition there is no solution.

3. To find c. From the fourth of Napier's proportions

, sin
-3 (A + B)~-

4. Check. Use the law of sines, or any other formula involving

B, C, and c, which has not been previously used.

The foregoing considerations regarding the number of admissible

solutions may be summed up into the following:

Rule.

a. If sin a < sin b sin A
,
there is no solution.

b. If sin a = sin b sin A
,
there is one solution, B = 90.

c. If sin a > sin b sin A t
each of the two values of B which gives

A B and a b like signs yields a solution.
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Given.

a = 62 15',

b = 103 19',

4= 53 43'-

To find.

B = 62 25',

C= iSS 43',

c = 153 10',

Solution.

i. To find B.

sin 5
sin b sin yl

2. To find C.

,~ sin | (a- 6)

Fig. 41. C f

70

log sin b = 9.98816

log sin A 9.90639

colog sin a =
^05306

log sin B 9.94761

5 = 62 25' or B' --

*. To find c.

"7"35'-

cot 404 B). tan \ c~-

sin

= 82 47',
./

401+*')=)= 53 o4',

a-b) = -2o" 3 2', $(A-B) =- 4 2i', l(A-B')

Since the signs of a b and A B arc alike for both

there are two solutions.

log sin 4 (a
-

b)
= 9.54500^

colog sin J (# + b) 0.00345

log cot 4 (-4 5) = i.n88orc

log cot | 04 -5') =
0.205347*

log tan | C = 0.66725

logtanf C'= 9-75379

4. Check.

4C = 775i-5
/
.

i /*</ o /\C = 29 33.9.
C =155 43-0'.

C'= S97.8'.

sin b sin c

log sin \ (A + B}

colog sin ^ 01 B)

log tan | (a
-

b)

log sin J 01 + 50
colog sin \ (A 50

log tan 4 c

log tan 4 ^

4

= -3i 5&-

values of B

= 9.92874
=

1.12005;*
= 9-5735^
=

9-99875
= 0.27660^
= 0.62230
= 9.84886

76 34-8'.

35 13-5'-

1 53 09.6'.

70 27.0'.

sin B sin C sin C'

log sin b = 9.98816 log sin c 9.65466 log sin c' = 9.97421

log sin B = 9.94761 log sin C= 9.61411 log sin C"= 9.93366

0.04055 0.04055 0.04055
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EXERCISE 14

Solve the following triangles:

1. a = 56 40', b = 30 50', A = 103 40'.

Am. B = 36 36', C = 52 oo', c = 42 39'-

2. ft = 44 45', c = 49 35', B = 58 56'. (Two solutions.)

3. a = 148 34.4', b = 142 n.6 ;

,
yl = 153 17.6'.

Ans. B =
31 53.7', C = 6 17.6', c= 7 18.3';

J5' = 148 06.3', C = 130 21.4', c
1 = 62 08.8'.

4. a 41 25.8', 6 = 19 57.9', A 62 oc;.5
/

. (One solution.)

5. a = 67 12' 20", 5 = 48 45' 40", = 42 20' 30".

4iw. A = 55 30' 57", C = u6 34'jS", <: = o3 o8' 10";

4' = 124 20' 03", C' = 24 32' 15", cf = 27 37' 20".

6. a = 38 10' 10", ft = 24 56' 45", ^ = 65 25' oo". (No solution.)

43. Case VI. Given Two Angles and the Side Opposite One
of Them, A, &, a.

As in Case V so here there may be two solutions. (See Art. n.)
1. To find ft. Use the law of sines,

. 7 sin B sin a
sin ft = ;

sin A

2. To find c. From the fourth of Napier's proportions,

.. sin ^ (A B) ,
, , N

cot^ =
snr|ij+^-)

cot -Ha - 6) -

3. To find C. From the second of Napier's proportions,

cotJC-?
n
4-S

fl
- -StmiW-B).sm 7} (a ft)

4. Check. Use the law of sines, or any other formula involving

ft, c, and C, which has not been previously used.

To determine the number of solutions we have the following rule

which is based upon a process of reasoning exactly analogous to that

employed in establishing the corresponding rule in Case V.

Rule.

a. If sin A < sin B sin a, there is no solution,

ft. If sin A = sin B sin a, there is one solution, ft = 90.
c. If sin A > sin B sin a, each of the two values of ft, which gives

to a ft and A B like signs, yields a solution.
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EXAMPLE.

Given

A = 45 3o',

= 37 22',

a = 40 36'-

Solution.

i. To find b.

log sin B =
9.78312

log sin a = 9.81343

colog sin A = 0.14676

log sin b = 9.74331

ft
= 33 37-5'

' = 146 22.5'

To find

*= 33 38',

c= 59 IS',

C = 109 37'.

j (4 + B) = 41 26'

% (A B) = 4 04'

i (0 + #) = 37 06.8'

i fa W =
3 29-2'

*(+&') =
93 29-2'

5 (a
-

&')
= -52 48-2'

A B and a b
f

have unlike signs, hence 6' does not yield a

solution.

2. To find c.

log sin o (.4 7?)
=

8.85075

colog sin \ (A + B) = 0.17931

log cot \ (a
-

b)
= i. 21 507

log cot | c = 0.24513

4. Check.

sin J5 _ sin C
sin b sine

=
59 iS- 2

log sin B
log sin b

3. To find C.

log sin J (a + b)
= 9.78060

colog sin % (a b)
=

1.21588

log tan J (A - B) = 8.85185

log cot I C =
9-84833

K= 54 48.45

C = 109 36.9'

9.78312 log sin C =
9.97403

9.74331 log sin c =9.93421

0.03381 0.03382

EXERCISE 15

Solve the following triangles:

1. A =
36 20', B = 46 30', a = 42 12'.

/Iws. 5 =
55 19', c = 81 IQ', C = 119 19';

b' = 124 51', c' = 162 38', C = 164 44'.

2. ^ = 60 32', B =
25 56', a = 35 18'. (One solution.)

3. A =
73 ii-3', B = 61 18.2', a = 46 45-5'-

Ans. b = 41 52.6', c = 41 35.1', C = 60 42.8'.

4. A =
103 56.9', B= 79 35.8', a =127 45.0'. (Two solutions.)
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5. B = 123 40' 20", C = 159 43' 22", C = 159 50' 05".

Ans. ft =
55 52' 30", a =

137 21' 19", 4 = 137 04' 26";

ft' = 124 of 30", a' = 65 39' 44", ^' = "3 39' 16".

6. ^ = 70 45' 10", B = 119 56' 56", ft = 79 45' 02". (No

solution.)

44. To Find the Area of a Spherical Triangle.

EXAMPLE.

Given a = 124 12' 31",
= 54 18' 16", c = 97 12' 25". Find

the spherical excess, and hence the area of the triangle, the radius of

the sphere being 3959 miles.

Solution. By Art. 34 we have

tan {- E Vtan \ s tan \ (sa) tan \ (s b) tan \ (sc) ,
T = -

.

IOO

\a = 62 06' 15.5" log tan \ s 0.41426

i b = 27 09' 08" log tan \ (s
-

a)
=

9.07809
= r ;/

c = 4836
r

i2.5
;/

log tan f (.* ft)
= 9.95105

=
137 5i' 3<>" log tan %(s-c) =

9.56871

J 5 = 68 55' 48
/r

log tan2
{ E =

9.01211

i (s-a)= 6 49' 32.5" log tan { E =
9.50605

\ (s
-

b)
= 41 4^' 40" I /<J =

17 46' 45"

i (j
-

6-)
= 2oK/35^ =

7i 07' oo"

(check) 68 55' 48"

log ^ = 3.59759

log/?
2 =

7- J 95 l8

logx =
0.49715

log -
1.85197

colog 1 80 =
7^744_73

log T =
7.28903

T 19455 X io3
square miles.

45. Applications to Geometry.

EXERCISE 16

Right Spherical Triangles

1. The hypotenuse of an isosceles right spherical triangle is 60.

Find the length of the equal sides. Ans. 45.

2. Find the relations between each two of the three distinct parts of

an isosceles right spherical triangle. Ans. cos c = cos2a = cot2A.
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3. Show that no isosceles right spherical triangle can have its

hypotenuse greater than 90 nor its acute angle less than 45.

4. Find the altitude and angle of an equilateral spherical triangle

whose side is 60. Ans. Altitude = 54 44', Angle = 70 32'.

5. If a is the side, A the angle, and p the altitude of an equilateral

spherical triangle, show that sin J a sin J A J, cos p =
COS 2 &

6. The side of a spherical square (a spherical quadrilateral having

four equal sides and four equal angles) is 73 41', find the angle and

length of a diagonal.

Ans. Angle = nSo4.5', Diagonal 106 16'.

7. The side of a regular spherical polygon (a spherical polygon

having n equal sides and n equal angles) is a. Find the angle A of the

polygon, the perpendicular p from the center of the polygon to one

of the sides, and the distance r from the center to one of the vertices

of the polygon.

. . . cos (ir/n) . L ^ ! , / / \ . sin % a
Ans. sin -J A = ,

,
sin p = tan % a cot (TT/W), sin r= .

- -
--, :z

cos \ a
' ^ * v ' / sm (jr/n)

8. Find the perimeter of the polygon (Problem 7) when p 90.
Ans. 2 TT.

9. Compute the dihedral angles of a regular tetrahedron. Of a

regular dodecahedron. Ans. 70 31' 44", u633'54".

Suggestion. With a vertex of the polyhedron as a center describe

a sphere. The points in which the three edges proceeding from the

vertex intersect the sphere determine an equilateral spherical triangle

the sides of which are known.

10. Compute the dihedral angles of a regular octahedron. Of a

regular icosahedron. Ans. 109 28' 16", 138 u' 23".

EXERCISE 17

Oblique Spherical Triangles

1. The three face angles of a trihedral angle are BOC = 84 24',

COA =
72 18', AOB = 60 18'. Find the dihedral angles.

Ans. OA =
93 40', OB = 72 48', OC = 60 36'.

2. Two planes intersect at an angle of 58 40'. From a point of

their line of intersection two lines are drawn, one in each plane,
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making the angles 42 30' and 64 24' with the line of intersection.

Find the angle which the lines thus drawn make with each other.

Ans. 50 33'.

3. The great pyramid of Gizeh has a square for its base, and the

angle between two edges at the vertex measures 96 01.2'. Find the

angle which each face makes with the horizon. Ans. 51 51'.

4. A ten-sided pavilion is covered by a pyramidal roof. Two
consecutive hips of the roof make an angle of 30. Find the angle

between two consecutive faces of the roof. Ans. 159 53'.

5. The opposite faces of an obelisk are inclined at an angle of 16.

Find the face angles at the base of the obelisk and the angle between

two adjacent faces. Ans. 82 04.6', 91 06.6'.

6. The ridges of two gable roofs meet at right angles. The slope

of each roof is 60. Find the angle between the planes of the two

roofs, and the angle the valley makes with each ridge.

An*. 104 26.6', 63 26.1'.

7. A mason cuts a stone in the shape of a pyramid with a regular

hexagonal base. The edges are inclined at an angle of 30 with the

base. Find the angle between two adjacent lateral faces, and the

inclination of the faces to the base.

Ans. I49i8.6', 39 13.9'.

8. If a, /3, 7 are the arcs joining any point in a trirectangular

triangle to the vertices of the triangle, show that

cos2 a + cos 2
(3-\- cos 2

7 = 1.

9. An oblique parallelepiped has the three edges OA 2.59,

AB =
3.65, OC =

7.21, and the angles AOB =
72 16', BOC = 80 44',

COA 41 18'. Find its volume. Ans. 21.30.

46. Application to Geography and Navigation.

EXERCISE 18

1. Find the shortest distance measured along a great circle between

New York, lat. 40 42' 44" N., long. 74 oo' 24" W., and San Fran-

cisco, lat. 37 47' 55" N., long. 122 24' 32" W., the earth being

considered a perfect sphere, radius 3959 miles. A ns. 2564 miles.

2. Find the area of a spherical triangle on the earth's surface

(r
= 3959 rniles) whose spherical excess is i.

Ans. 273,575 square miles.
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3. Compare the shortest distances in degrees of San Francisco, lat.

37 47' 55" N, long. 122 24' 32" W, and Seattle, lat. 47 35' 54" N.,

long. 122 19' 59" W., from Tokio, lat. 35 39' 18" N., long. 139 44'

3"E.

4. Find the distance in degrees and the bearing of Rio Janeiro,

lat. 22 55' S., long. 43 09' W., from Cape of Good Hope, lat. 34 22'

S., long. 18 30' E.

Am. Distance 54 29', Bearing S. cS4 45' W.

5. Find the first and final courses from San Francisco, lat. 37 47'

55" N., long. 122 24' 32" W., to Yokohama, lat. 35 20' 52" N., long.

139 38' 41" E. Am. N. s65i'W., S. 54i 7
/ W.

6. A ship sails on an arc of a great circle a distance of 4150 miles

from lat. 17 N., long. 130 W., the initial course being S. 54 20' W.

Taking i = 6g| miles, what is the latitude and longitude of its final

position. Ans. Lat. i94i
/

S., long. 178 21' W.

7. A vessel sails from Boston, lat. 42 21' N., long. 71 03' W., to

Cape Town, lat. 33 56' S., long. 18 28' E. Find at what longitude

the ship crosses the Equator and its course at this point.

Ans. Long. 17 48' W., course S. 41 ic/ E.

8. Find the 'distance at which a vessel sailing from Seattle to

Tokio will cross the i8oth meridian and its latitude at the time of

crossing. (See Problem 3.)

9. Find the latitude and longitude of the place where a ship sailing

from Cape of Good Hope to Rio Janeiro crosses the meridian at right

angles. (See Problem 4.)

Ans. Lat. 34 43' S., long. 9is'E.

10. Find the longitude and latitude of the place where a ship

sailing from San Francisco to Yokohama crosses the meridian at right

angles. (See Problem 5.)

11. The continent of Asia has nearly the shape of an equilateral

triangle, each side being approximately 5500 miles. Find the area

of the triangle (a) regarded as a plane triangle, (b) regarded as a

spherical triangle, the radius of the earth being assumed 3960 miles.

Ans. 13,098,500 square miles; 17,228,400 square miles.
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47. Applications from Astronomy.

EXERCISE 19

(For definitions of terms consult any dictionary or textbook on

astronomy.)

1. How many seconds does it take for a star whose declination

is +64 04' to cross the field of a telescope, the diameter of the field

being 36'? Ans. 329 seconds.

2. Find the approximate time of sunrise in Seattle, lat. +47 39',

on Jan. 15, 1913. Suggestion. Look up the sun's declination.

Ans.
*j

h
40.5 A.M. local apparent time.

3. Find the length of the longest day at Seattle, lat. +47 39'.

Suggestion. When the sun is at its summer solstice its declination

is 23 27'.

4. The moon's most northerly declination during this Saros

occurred on March 19, 1913, and was 28 44' 10". Find approxi-

mately how long it was below the horizon at San Francisco, lat. 37

48' 24". Ans, 8'
1

56.

5. The zenith distance of the sun was observed to be 45 26' the

afternoon of a day when its declination was +20 32'. If the latitude

of the place was +37 10', what was the local apparent time?

6. The azimuth of the sun was measured and found to be 10 14.2'

and its zenith distance 25 12.1' at a time when its decimation was

+ 21 39.2', find the latitude of the place.

Ans. 46 34.1'.

7. In Problem 6 find the local apparent time.

Ans. oh

30 13*.

8. At i
h
15 1 6. i* local apparent time the altitude of the sun was

found to be 68 21' 46" at a time when its declination was +22 41' 30".

Find the latitude of the place.

9. In Problem 8 find the azimuth of the sun.

10. The altitude of the sun was measured and found to be 40 18'

25" at a place whose latitude is 47 39' 06" at 2* iom 17.8* local

apparent time. Find the sun's declination.

Ans. +6 25' 53".

11. The northeastern end of the canal Phison on Mars is in Martian

latitude o 03' N. and longitude 335 10' and the southwestern end
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is in latitude 40 08' S. and longitude 296 58'. Find the length of

Phison, the diameter of Mars being 4200 miles.

Ans. 1946.6 miles.

12. The declination of Algol is +40 37'; find the azimuth of the

star when setting at Ann Arbor, lat. +42 17'.

13. The declination of Aldebaran is +16 20.1'; find the azimuth

of the star when setting at Seattle, lat. 47 39.1'.

Ans. 114 40.8'.

14. The decimation of Procyon is +5 26' 55"; find the azimuth

of the star when setting at Chicago, lat. 41 50' 01".

15. The decimation of 43!! Cephei is now (1913) 85 47'. Find

its azimuth at Washington, D. C., lat. 38 54', 3^ iom after its meri-

dian passage.

16. The declination of Polaris is now (1913) 88 50' 38". Find

its azimuth at Seattle, lat. 47 39' 06", 5* oim 20" after its meridian

passage. Ans. 178 19' 50".

17. The right ascension and declination of Regulus are

a =ioh
O3
m

44.4", 5 =+ 12 23' 34". On May 13, 1913, the moon's

right ascension and declination were a 9* 58 37.3% d =+ 15 32'

44". Find the angular distance between the moon's center and

Regulus. Ans. 3 23' 20".

18. The obliquity of the ecliptic is now (1913) 23 27' 02". Find

the celestial latitude and longitude of a star for which a ^
h
15 20%

6 =+36 17' 56".

Ans. ft
= + 17 33' 19.7", X = 56 n' 24.5".

19. What is the greatest altitude of a star on the equator in the

meridian of Washington, lat. +38 53' 39"? Ans. 51 06' 21".
















