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PREFACE

IN preparing this little text the author has followed the general
plan adopted in his plane trigonometry. Whatever unusual merit
the book possesses must be sought for largely in the following points:

1. Superfluous figures in the answers to problems are suppressed
on the ground that the current practice of giving answers to a degree
of accuracy not warranted by the data is detrimental-in its influence
on the student.

2. The first exercises under each case of triangles have the parts
given to the nearest minute only. This is done to relieve the student
of the task of interpolation until he has acquired some familiarity with
his formulas. After that the parts are given to the nearest tenth of a
minute and then follow exercises in which the data are expressed to
the ncarest sccond.

3. It is believed that a proof of Napier's Rules of Circular Parts
appears here {or the first time in an elementary textbook. .

4. Alternate proofs arc given or suggested for all fundamental
theorems.

5. The three fundamental relations of the parts of oblique spherical
triangles are proven simultaneously by the principles of analytical
geometry enabling classes which have some familiarity with analyt-
ical geometry to cover the present subject in a minimum of time.

6. More complete lists of applied problems will be found than is
customary in the current texts.

The author wishes to acknowledge his indebtedness to his colleague,
Professor S. L. Boothroyd, Associate Professor of Astronomy, who
has prepared the list of problems from astronomy and has read the
entire manuscript.

All references to plane trigonometry are to the author’s “Elements
of Plane Trigonometry,” Wiley and Sons, New York.

ROBERT E. MORITZ.
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SPHERICAL TRIGONOMETRY

CHAPTER I
INTRODUCTION

1. Definition of Spherical Trigonometry. If three points on any
surface are joined by the shortest lines lying in the surface that it
is possible to draw between these points a triangle is formed. Every
such triangle has six parts, three sides and three angles. In general
the sides are not straight lines but geodesic lines, that is, the shortest
lines that can be drawn on the surface connecting the points. Thus
every class of surfaces gives risc to a special trigonometry whose
object is the investigation of the relations between the parts of the
triangle and the study of the functions necessary for the determin-
ation of the unknown parts of a triangle from a sufficient number
of given parts.

If the surface under consideration is the plane, the geodesics are
straight lines and the triangles plane triangles, whose properties and
those of the functions necessary for their solution have been consid-
ered in plane trigonometry. If the points lie on the surface of a
sphere the geodesics are arcs of great circles, the triangles are called
spherical triangles, and the corresponding trigonometry, spherical
trigonometry. Briefly stated,

Spherical Trigonometry deals with the relations among the six parts
of a spherical triangle and the problems which may be solved by means
of these relations. The most important of these problems consist in
the computation of the unknown parts of a spherical triangle from
three given parts. It will be found that the solution of spherical
triangles requires no functions other than those employed in plane
trigonometry.

2. The Uses of Spherical Trigonometry. It is obvious that
the triangle formed by three points on the earth’s surface is not a
plane triangle but a spherical triangle, for the distances between are

measured not along straight lines but along arcs of great circles. It
I



2 SPHERICAL TRIGONOMETRY [crAP. 1

is only when the distances are comparatively small that the sides may
be considered straight lines and that the formulas of plane trigonom-
etry give fairly approximate results. Hence geodetic surveying,
that is surveying on a large scale, requires a knowledge of spherical
trigonometry. The same is true of navigation when the bearings and
distances of distant ports are under consideration. Strictly speaking
since the carth is not a perfect sphere but a spheroid, such problems
require a knowledge of spheroidal trigonometry, a branch of trigonom-
etry whose study demands the introduction of functions other than
those considered in plane trigonometry, but for many purposes the laws
of spherical trigonometry give sufficiently accurate approximations.

While a knowledge of spherical trigonometry is of great importance
to the surveyor and navigator, it is of even greater importance to the
astronomer. The positions of all heavenly bodics are referred to the
surface of an imaginary sphere, the celestial sphere, which encloses
them all. In fact it is the dependance of astronomy upon spherical
trigonometry that first led to its study by the ancients, long before
plane trigonometry was thought of as a separate branch of science.
Spherical trigonometry is, as it were, the elder sister of plane trig-
onometry.

Besides the uses alrcady mentioned, spherical trigonometry fur-
nishes the best possible review and constitutes one of the most inter-
esting applications of the principles of plane trigonometry. Spherical
trigonometry embodies the results of plane trigonometry in much the
same measure that solid geometry embodies the results of plane
geometry.

Finally, spherical trigonometry is worthy of study for its own sake
because of the marvellous relations which it reveals and the sim-
plicity, elegance, and beauty of the formulas in which its results are
embodied.

3. Spherical Trigonometry Dependent on Solid Geometry.
Just as plane trigonometry presupposes a certain knowledge of plane
geometry so spherical trigonometry requires an acquaintance with
solid geometry, especially with that portion of it which deals with the
sphere. The student should, therefore, have a textbook on solid
geometry ready at hand while pursuing this study in order to familiar-
ize himself anew with the theorems and definitions which are pre-
supposed in the discussions which follow. He should also provide
himself with a small wooden or plaster of paris sphere and construct
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his figures on it whenever he has difficulty in visualizing the figures
called for in his study.

4. Classification of Spherical Triangles. Like plane triangles,
spherical triangles are classified in two ways: first, with reference to
the sides and second, with reference to the angles.

A spherical triangle is said to be equilateral, isosceles, or scalene,
according as it has three, two, or no equal sides. Since each side of a

A“ ( % T
8 C B C

Fig. 1. Fig. 2.

spherical triangle may have any value less than 180°* one, two, or
all three of the sides may be quadrants. If one side is a quadrant,
the triangle is called guadrantal, if two, biguadrantal, if all three,
triquadrantal.

A right spherical triangle is onc which has a right angle; an obligue
spherical triangle is one which has none of its angles a right angle.

.

Fig. 3. Fig. 4.

Oblique spherical triangles are obfuse or acute according as they have
or have not an obtuse angle. Since the sum of the angles of a spherical

* By the number of degrees in an arc we mean, of course, the number of degrees
in the angle which the arc subtends at the center of the sphere. The number of
degrees in an arc being given, the length of the arc is at once found from the relation,
s = r6, where r is the radius of the sphere and 6 the radian measure of the angle.
(See P1. Trig., Art. go.)
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triangle may have any value between 180° and 540° and no single
angle can exceed 180° a spherical triangle may have two or even
three right angles. If it has two right angles it is called birectangular
(Fig. 1), if three, trirectangulor (Fig. 2). For the same reason a spheri-
cal triangle may have two or even three obtuse angles (Fig. 3).

If two points on a sphere are at the extremities of the same diam-
eter any great circle passing through one of the points will pass also
through the other. Two such points, therefore, cannot be the
vertices of a spherical triangle, for the great circles connccting these
points with any third point will coincide and the resulting figure will
not be a triangle but a lune (Fig. 4).

6. Co-lunar Triangles. If the arcs AB, AC (Fig. 5) forming two
sides of any spherical triangle be produced, they will mcet again in
some point A’, forming a lunc. The third side
BC divides this lune into two triangles, the origi-
nal triangle ABC, and the triangle A’BC. The
triangle A’BC thus formed is said to be co-lunar
with the triangle ABC. It is obvious that any
given triangle has three co-lunar triangles, one
corresponding to each angle of the triangle. Thus
the triangle ABC (Fig. 5) has the three co-lunar
triangles A’BC, AB'C, ABC’, where A’, B, C’
are the opposite poles of the vertices 4, B, C of the triangle ABC.

Since the angles of a lune are equal, and the sides of the lune semi-
circles, it follows that the -parts of the co-lunar triangles may be im-
mediately expressed in terms of the parts of the original triangle. If
we denote the sides of the triangle ABC by g, b, ¢, and the angles by
A4, B, C, the corresponding parts of the co-lunar triangles are as follows:

Trangle, Sides. Angles.
ABC a b c A B c
A'BC.. .. a 180°— b [180°—¢ A 180°~ B | 180°— C
AB'C . ...| 180°—a b 180°— ¢ | 180°— A B 180°— C
ABC'....... 180°—a | 180°— b c 180°— A | 180°— B C

6. Use of Co-lunar Triangles. Any general formula expressing
a relation between the parts of a spherical triangle must continue true
when applied to the co-lunar triangles. We may, therefore, sub-
stitute in any such formula for any two sides and their opposite
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angles their supplements, leaving the third side and angle unchanged.
This process frequently leads to new relations among the parts of the
triangle.

Thus, after it has been shown that for any triangle

—b C_ . A+ B

COS — = sI1n
2

a c
Cos Cos -2' ’

we obtain, by applying this formula to the co-lunar triangle A’BC,
o — L] — o o —_
a (1820 b) cos 180° — C — sin {1_-}-(;1829“ B) cos 1802 2

2

Cos

which reduces to the new formula

a+b. C A—-B
sin— = cos
2 2

. .. C
sin s —-
2

EXERCISE 1

1. Show that every birectangular spherical triangle is also bi-
quadrantal, and cvery trirectangular triangle is also triquadrantal.

2. Prove the converse of the proposition in Problem 1.

3. The co-lunar triangles of any right spherical triangle are right
spherical triangles, and the co-lunar triangles of any quadrantal
triangle are quadrantal.

4. The co-lunar triangles of an equilateral spherical triangle are
isosceles.

5. It will be shown later that for any spherical triangle

+b A+ B
2

sm = CO0S

c
cos COS —+
2

By applying this formula to the co-lunar triangle A’BC show that

a—b C . A—B. ¢
cos— = sin ———sin—-
2 2 2

sin

6. It will be shown later that for any spherical triangle
sing - \/sm (s — @) sin (s — b)
2 sina sind

etdte

2

where s=

By applying this formula to the co-lunar triangle 4 BC’ show that
C \/sm s sin (s — c)

sin ¢ sin b
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7. In Fig. 6, ABC is any right spherical triangle, right-angled at 1.
With B as a pole construct a great circle cutting CB produced in 2
and B.A produced in 3. With 4 as a pole
construct a great circle cutting 4B produced
in 4 and C.1 produced in 5. The resulting
figure is a curvilinear pentagon bordered by
five spherical triangles. Show that each of
these triangles is right-angled and determine
all their parts as indicated in the figure. (Re-
mark. The dashes over the letters indicate
complements, thus 4 = go° — 4, @= go° — a,
¢ = go° —g¢, clc.)

7. Polar Triangles. If from the vertices of any spherical triangle
ABC as poles, great circles are drawn they will divide the surface of
the sphere into cight associated spherical triangles one of which is
called the Polar of the triangle A BC, and is determined as follows:

The great circles whose poles are B and C respectively intersect in
two points which lie on opposite sides of the arc BC. Let .1’ be that
one of these two points which lies on the same side of BC as .1. The
great circles whose poles are C and A4 respectively intersect in two

Fig. 7. Fig 8. Fig. 9.

points which lie on opposite sides of the arc CA. Let B’ be that one
of the two points which lies on the same side of C.l as B.  Similarly,
let (" be that one of the intersection points of the great circles whose
poles are .1 and B, respectively, which lies on the same side of the arc
.1B as the vertex C. The triangle whose vertices are 4’, B', (" is the
polar of the triangle ABC.

Just as in triangle A BC we use 4, B, C to denote the angles and
a, b, ¢ to denote the sides opposite these angles, so A’, B’, C" denote
the angles and &/, ¥, ¢’ the sides opposite these angles in the polar
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It is necessary to recall the two fundamental properties of polar
triangles:

1. The relation of a triangle to its polar is mutual, that is, if A'B'C’
is the polar of ABC then ABC is the polar of A’B'C’. Since each of
these triangles is the polar of the other, two such triangles are referred
to as polar triangles.

II. In two polar triangles each angle is the supplement of the opposite
side in the other, and each side the supplement of the opposite angle in
the other. 1In symbols,

A+ d' = 180°, A"+ a = 180°,
B+ b = 180°, B’ 4+ b = 180°,
C+ ¢ = 18° C"+ ¢ = 18°.

8. The Six Cases of Spherical Triangles. It will be shown
presently that the six parts of any spherical triangle are so related that
when any three arc given the remaining three can be found. The
three given parts may be:

1. The three sides.
I1. The three angles.
III. Two sides and the included angle.
IV. Two angles and the included side.
V. Two sides and the angle opposile onc of them.
VI. Two angles and the side opposite one of them.

There are six cases of spherical triangles while there are only three
cases of plane triangles. This is because Cases IV and VI above
reduce to the same case for plane triangles, since any two angles of
a triangle determine the third. Also Case II above is ruled out for
plane triangles since the three angles of a planc triangle determine
only the shape but not the magnitude of the triangle.

9. Solution of Spherical Triangles. There are two distinct
mecthods of finding the unknown parts of a spherical triangle from three
known parts:

1. The Graphic Method. This consists of actually constructing
the triangle on a material sphere. The unknown parts may then be
found by measurement.

II. The Mecthod of Spherical Trigonometry. The unknown parts are
obtained by computation by means of formulas expressing the rela-
tion of the unknown parts to the parts which are given.
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The first method is purely geometrical and is subject to all the
errors of construction and inaccuracies of measurement pointed out
in PL Trig., Art. 3. It is valuable as a rough check on the second
method rather than as an independent method of solution.

The second method gives the unknown parts to a degree of ac-
curacy limited only by the accuracy of the data and the number of
places of the tables employed in the computation. This is the method
employed in Geodesy, in Astronomy, and whenever precision is
necessary or desirable. The derivation of the formulas employed
by the second method and their application to the solution of the six
cases of triangles constitutes an important part of Spherical Trigo-
nometry.

10. The Use of the Polar Triangle. By the use of the polar
triangle the second, fourth, and sixth case of spherical triangles may be
made to depend on the first, third, and fifth respectively. Consider
for instance Case II, in which the three angles are given. From
the relations of Art. 7 the three sides of the polar triangle are
known, this triangle may, thercfore, be solved by Case I, and having
found the angles of this triangle, the sides of the original triangle are
given by the relations of Art. 7. Similarly, Case IV may be solved
by Case III, and Case VI by Case V.

Again by means of the polar triangle any known relation between
the parts of a triangle may be madc to yield another relation, which
frequently turns out to be new; for a relation which holds for every
triangle must remain true when applied to the polar, that is, it must
hold true if we put for each side the supplement of the opposite
angle and for each angle the supplement of the opposite side. Thus
if in the formula

cos} (@—b) cost}C=sin}(4+ B)cosic
of Art. 6 we put
a =180°—A",b =180°—B’,C =180°—(/,
A =180°—a’, B =180°— b’, c=180°—C",
we obtain
o__ AN _ o__ pr o__
COS(ISO A" : (180 B)cosﬁqfc _
o__ o__pr o __ (v
sin(Iso a)-i-(xSo b)COSISO - C ,
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which on reducing becomes
cosg (A" — B') sin} ¢’ =sin} (¢’ + ") sin} C',
or dropping accents
cos3 (4 —B)sinyc=sini(a+b)sinlC.

11. Construction of Spherical Triangles.

Case 1. Given the three sides, a, b, c.

On a sphere lay off an arc BC equal to ¢.* With B as a pole and
an arc equal to ¢ draw a small circle and with C
as a pole and an arc equal to b draw another
small circle. Either of the intersection points,
A, A’, of these small circles will be the vertex
of a triangle whose other vertices are B and C
and whose sides are the three given parts, 4, b, c.

Case II.  Given the three angles, A, B, C.

By Case I construct the polar triangle whose
sides arc

a=18°—A4, b=18°—B, c¢=18"—C.
The polar of this triangle will be the required triangle.

Case III. Given two sides and the included angle, a, b, C.

On a sphere draw an arc CM of a great circle and on it Jay off an
arc (B equal to a. Through C draw an arc CN
making an angle C with CAL.f On CN lay off
an arc CA4 equal to b and join 4 and B by an
arc of a great circle. Then ABC will be the re-
quired triangle.

Case IV. Given two angles and the included
side, 4, B, c.

Fig. 11. By Case III construct the polar triangle whose
two sides and included angle are:
a=18°—A, b=18°—B, C=18"°—c.
The polar of this triangle will be the required triangle.

* To lay off an arc equal to a means to lay off an arc of a great circle containing
a degrees. This may be readily done by means of a strip of paper or cardboard
equal in length to a semicircumference of the sphere and dividing it into 180 equal
divisions. Each division will then represent one degree of angular mecasure on the
sphere.

P 1 This is most easily done as follows: From C as a pole draw the arc of a great
circle. Let M be its intersection with CM. On this arc lay off MN equal to C.
Join N and C by an arc of a great circle. Then NCM will be the required angle.
(Why?) :

L —
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Case V. Given two sides and the angle opposite one of these sides,
a, b, A.

We distinguish two cases according as the angle A4 is acute or
obtuse.

1. A acute.

On a sphere (Fig. 12) draw two arcs, AM and AN, making an angle
A with each other and let 4 and A’ be their points of intersection.
On one of these arcs, as AN, lay off AC equal
to b. With C as a pole and an arc equal to @
describe a small circle.* In general this circle
will intersect the arc A M in two points, B and
B, cither of which, if its angular distance
from A is less than 180° will form the third
vertex of a triangle whose other two vertices
are A and C and which will contain the three
given parts.

Let p = CD be the arc through C which is perpendicular to AM.

(@) If @ is less than p, the small circle will not intersect A2 and
no triangle exists having the given parts. The solution is impossible.

(0) If @ = p, there is one solution. The resulting triangle has a
right angle at D.

(¢) I ais greater than p but less than the shorter of the two sides,
AC = b,CA’ = 180° — b, there will be two solutions, ACB and ACB'.

(d) If ais greater than the shorter of the two sides b and 180° — &
but less than the longer, there will be one solution.

(e) 1f ais greater than the longer of thc two sides b and 180° — b
there will be no solution.

1I. A obtuse.

Draw the two arcs AM and AN’ (Fig. 12), making the angle A with
each other. On onc of these arcs, as AN’, lay off AC” equal to b.
With (' as a pole and an arc equal to a describe a small circle which,
in general, will intersect the arc .1 in two points, B and B’, cither of
which, if its angular distance from 4 is less than 180° will form the
third vertex of a triangle whose other two vertices are 4 and C’.

Let ' = C’D be the arc through ¢’ which is perpendicular to AM.
As p is the shortest arc that can be drawn from C to AM, so p’ is the
longest arc that can be drawn from C’ to A M.

* This may be done by means of a pair of compasses.
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(a) If @ is greater than p’, the small circle will not intersect AM
and no triangle exists having the given parts. There is no solution.

(0) I a = p’, there is one solution. The resulting triangle has a
right angle at D.

(¢) If ais less than p’ but greater than the longer of the two sides,
AC' = b, C'4A’ = 180° — b, there will be two solutions, AC’B and
AC'B'.

(d) I a is less than the longer of the two sides, b and 180° — b,
but greater than the shorter, there will be one solution.

(¢) If a is less than the shorter of the two sides, b and 180° — b,
there will be no solution.

Case VI. Grven two angles and the side op posite one of them, A, B, c.

By Case V construct the polar triangle whose parts are a = 180° — 1,
b = 180° — B,.l = 180° — a¢. The polar of this triangle will be
the required triangle. As in Case V, so here there may be either one
or two solutions or the solution may be impossible.

12. The General Spherical Triangle. We have defined a spheri-
cal triangle as the figure formed by joining three points on a sphere,
which lie not in the saume great circle, and no two of which are opposite
ends of the same diamecter, by the shortest great arcs. From this it
follows that cach side of a spherical triangle is less than a semicir-
cumfierence, and its angular measure less than 180°.

Now the great circle drawn through two points is divided by those
points into two arcs cither of which may be considered the arc between
the two points. If one of these arcs is less
than 180° the other will be greater than 180°
for their sum is always 360°. Hence if we
drop the word shortest from the above defini-
tion, the resulting definition admits triangles B
whose sides have any value between o° and
360°.  Such triangles are called general spheri-
cal triangles. Since the arc between cach two
vertices may be chosen in two ways there are
eight general triangles having the same three
vertices. Fig. 13 shows two of these triangles, the triangle AA/BC
and the triangle A 3’BC.

The study of gencral spherical triangles forms the ohject of Higher
Spherical Trigonometry. Their principal applications are found in
astronomy where it is frequently necessary to consider triapgles

A

m
Fig. 13.
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whose sides or angles exceed 180°. We observe that every spherical
triangle, one or more of whose parts exceed 180°, may be solved by means
of another whose parts are less than 180°, though this is not the simplest
way of treating such triangles. In the present text we shall limit our
discussion to triangles which satisfy the first definition, that is, tri-
angles each of whose parts is less than 180°.

EXERCISE 2

1. Prove the two theorems of Art. 7.
2. Prove that the polar of a right spherical triangle is quadrantal,
and conversely, that the polar of a quadrantal triangle is a right

triangle.
3. Prove that the polar of a birectangular spherical triangle is

biquadrantal, and conversely, that the polar of a biquadrantal tri-
angle is birectangular.

4. Prove that a trirectangular triangle is its own polar.

5. If the sides of a triangle are cach less than ¢o° it lies wholly
within its polar; if each of its sides is greater than go° its polar lies
wholly within it.

6. In any spherical triangle ¢ + & + ¢ < 360°. By applying this
relation to the polar show that in every spherical triangle

180° < A+ B+ C < 3540°.

7. In every spherical triangle the sum of two sides is greater than
the third side, that is ¢ + b > ¢. By applying this relation to the
polar show that in every spherical triangle the difference between any
angle and the sum of the other two is less than 180°, that is, 4 4+ B —

C < 180°.
8. It will be shown later that in any spherical triangle

cosa = cos b cosc + sind sinc¢ cos 4.
By applying this formula to the polar triangle show that also
cos A =— cos B cos C + sin B sin C cos a.

9. By applying the formulas of Problem 6, Exercise I, to the polar
triangle, deduce the two new formulas,
o _\fosE—DeosS=B) g c_ [ cosScos(S—C)
cosz—\/ sin 4 sin B ST sind sinB
_A+B+C,
2

where N
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10. Construct the triangle called for in Case IV, Art. 11, without
employing the polar triangle.

11. In Case V, Art. 11, write out the conditions under which
the construction admits (¢) one solution, (b) two solutions, (c) no
solution.



CHAPTER II
RIGHT AND QUADRANTAL SPHERICAL TRIANGLES*

13. Formulas for Right Spherical Triangles. Every right
triangle has a right angle and five other parts which, beginning with
a side including the right angle, are denoted in order by a, B, ¢, 4, b.
We shall show that every three of these five parts are so related that
when two are given the third may be found. Now the above five
parts admit of ten different sets of three, namely:

A,a,¢c; A, bye; A,a,b; 4, B,b; ¢, a,b;
B,b,¢c; B,a,c; B,b,a; B, A,a; ¢, A, B;

hence we shall find ten formulas for the right spherical triangle.
Let ABC, Fig. 14, be aright spherical triangle, C the right angle. Let

O be the center of the sphere and O — ABC the trihedral angle formed
by the planes of the great circles whose
arcs are a, b, ¢, respectively. It is
shown in geometry that the face angles
BOC, COA, AOB are measured by the
arcs a, b, c, respectively, and that the
dihedral angles O4, OB, OC are equal
to the angles 4, B, C, respectively.
From any point P in OB draw PR
perpendicular to OC, and from R draw RS perpendicular to OA4.
Join P and S. Then SR is perpendicular to PR (why?), and PS is
perpendicular to OA4 (why?). Hence

triangle ORP has a right angle at R,

triangle OSR has a right angle at .S,

triangle OSP has a right angle at .S,

triangle PRS has a right angle at R,

and angle PSR cquals angle 4 (why?).{

Fig. 14.

* 1f the class has some knowledge of analytical geometry and the teacher wishes
to cover the subject in the least time possible, he may omut the work to Art. 206.
The fundamental relations for the oblique triangle as there developed may be
specialized for the right triangle by putting C = go°.
t See footnote on page 15.
14
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In triangle PRS
sind = RP RP/OP sin ROP
SP ~ SP/OP " sin SOP’
or sin 4 = sin a/sin c. (1)
Interchanging letters  sin B = sin b/sin c. (2)
cosA = SR _ SR/0OS _ tan Rg,
SP = SPJOS ~ tan POS
or cos 4 = tan b/tan c. (3)
Interchanging letters  cos B = tan a/tan c. (4)
tan A = RP RP/OR tan POR
SR SR/ OR ~ sinROS’
or tan 4 = tan a/sin b. (5)-
Interchanging letters  tan B = tan b/sin a. 0)
. ina _RP _RP OR 0s
SP~_ OR 0SSP
= tan POR - sec ROS - cot POS
_tana L1 ,
T tanc cosb
whence, substituting the value of tan a/tan ¢ from (4), we have
sin 4 = cos B/cos b. @)
Interchanging letters sin B = cos A4/cos a. (8)
Once more, cosc = 8; 8;; g; = cos POR - cos ROS,
or €OS ¢ = COS @ COS b. (9)

Finally, substituting in (9) for cos ¢ and cos b their values from (7)

and (8), we obtain
cos ¢ = cot 4 cot B. (x0)

t Let the student who has undue difficulty in per-
ceiving these relations construct the trihedral angle
and the corresponding spherical triangle as follows: 3
From a piece of cardboard or tin cut out a circle with
any radius.

Draw four radii 04, OC, OB, 04’, making the
angles 50°, 70° 77° 18, respectively. Cut the circle
along the radii 04 and 04’, and remove the sector
AMA’. Cut the remaining sector partly through along
OC and OB and bend the cardboard along these radii

M
Fig. 15.
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14. Plane and Spherical Right Triangle Formulas Compared.
The student will be assisted in remembering the ten formulas of the
preceding article if he associates them with the corresponding formu-
las for the plane right triangle, as shown in the following table:

Plane Right Triangles. Spherical Right Triangles. |
sin 4 =2 sinB=é sin 4 = S0 % sin B——m—k
c ¢ sin cb sin ¢
a
cosA—~b cos B =2 t:osA=m'11 t:osB—tan
c c tan ¢ tan ¢
tand =9 tanB=I—' tanA:t{ma tan ta.nb
b a sin b T sina 12
. s B .
sm A =cosB | sinB=cos 4 sin 4 = %522 sin B =225
cos b cos @
¢ = q? + b2 cos¢C =cosacosb
1 = cot 4 cot B cos ¢ = cot A cot B

16. Generalization of the Right Triangle Formulas. In Fig.
14 the sides a and b are each less than go°. It remains to show that
the formulas in Art. 13 hold for @il possible values of @ and b.

1. One side adjacent to the right angle greater than 9o° and the other
less than 9o°.

In the right triangle ABC (Fig. 16), let a be greater than go® and
b less than go°®. The co-lunar triangle AB’C will have a right angle

Fig. 17.

at C and the adjacent sides 4 and ¢’ = 180° — @, each less than go°.
We may, therefore, apply the formulas of Art. 13 to this triangle.
Thus (1) gives

sinCAB’=Sina sin (180° — a) _ sina orsinA=§il‘-;
sin¢’  sin (180° — ¢) “sinc’ sin¢
that is (1) remains true for the triangle A BC.

until 04’ meets O4. The figure thus formed will be a right trihedral angle, 4ABC

will form a right spherical triangle, and the lines PR, RS and PS’ will form the
triangle PRS of Fig. 14.
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Similarly each of the other nine formulas will be found true for the
triangle A BC.

I1. Each of the sides adjacent to the right angle greater than 9o°.

In the right triangle ABC (Fig. 17), let ¢ and b be each greater than
90°. The co-lunar triangle A BC’ will have a right angle at C’ and the
adjacent sides ¢’ = 180° — a and b’ = 180° — b, each less than go°.
We may, therefore, apply the formulas of Art. 13 to this triangle.
Thus (1) gives

sin BAC' = sina’ _ sin (180° — a) _sine sina

: . ——,orsind =—=—,
sin ¢ Sin ¢ sinc¢ sin ¢

that is (1) holds true for triangle A BC, and similarly each of the other
nine formulas will be found true for this case.

This proves that the formulas of Art. 13 may be applied to the
solution of every possible right spherical triangle.

16. Napier’s Rules of Circular Parts.* Lord Napier, the in-
ventor of logarithms, first succeeded in expressing the ten right
triangle formulas by two simple rules. Let us put

9g°— A4 =4, go°—c=¢, 9o°— B=B,

then
sind = cosd, cosA=sind, tand = cot4, cotd =tan4,
sin ¢ = cos¢, etc., sin B = cos B, etc.

The ten equations of Art. 13 may then be written as follows, the new
formulas being numbered as in Art. 13.

sing = cos 4 cos & (1) sin A= tanbtanc 3)
sinb = cos B cos ¢ (2) sin B= tanatant (4)
sin B = cos 4 cos b N sin b = tan a tan 4 (s)
sinA = cos B cos @ 8) sin ¢ = tan btan B (6)
sin ¢ = cos a cos b (9) sin ¢ = tan4 tan B (10)

ol

Let us now arrange the five parts @, B, ¢, 4,5
in their order in a circle as in Fig. 18. Any one B,
of thesc five parts, as a, being chosen as the mid~
dle part, the two next to it, as b and B, are

called adjacent parts and the remaining two parts,

>l

* This and the following article may be omitted by those «
who prefer to memorize the preceding ten formulas as suge
gested in Art. 14. Fig. 18.
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as A and ¢, are called opposite parts. Then each of the five equa-
tions on the right are contained in

Rule 1. The sine of the middle part is equal to the product of the
tangents of (ke adjacent paris,

and the five on the left are contained in

Rule 2. The sine of the middic part is equal to the product of the
cosines of the opposite paris.

These two rules are known as Napier’s Rules of the Circular Parts.

17. Proof of Napier’s Rules of Circular Parts. Napier’s rules
arc commonly looked upon as memory rules which happen to include
the ten right triangle formulas. They have heen proclaimed the
happiest example of artificial memory known to man. Because of
their supposed artificial character their value as an instrument in
mathematics has been questioned. We shall now show that Napier’s
rules are not mere menotechnic rules but constitute a most remarkable
theorem which admits of rigorous proof.

Let ABC: be a right spherical triangle, C; the right angle. With
B as a pole draw a great circle cutting C1B produced in (e and B.1
produced in C3. With 4 as a pole draw a great circle cutting AB
produced in C4 and (34 produced in (. The resulting figure is a
spherical pentagon ABPRS, bordered by five
triangles I, IT, III, IV, V.

Since B is the pole of the arc Co(; the angles
at C; and Cj are right angles and since .1 is the
pole of arc C4Cs the angles at C4 and Cs are
right angles. The five triangles are, therefore,
right triangles.

Since C; and C are right angles, .S is the pole
of C1C. and consequently SC; and SC, are quad-
rants. For like reasons RCi, RCs, PCs, PCy, BCs, BC3, ACy, ACs
are quadrants.

With these preliminary observations it is now casy to show that
the five triangles I, T1, II1, IV, V have the same circular parts taken
in the same order, while the position of these parts with respect to the
right angle is different in cach of the triangles.

Let us compare the two triangles ABC; and PRC; and denote by
@, Bs, 3, A, by the five parts of II which correspond to ¢, B, ¢, 4,
b of I. Comparing angular measures we have
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a2 = CaR = CsCs — RCs = (180° — B)— 9o°® = go° — B = B,
B, = PRC; = 180°—PRS =180°— C3C, =180°— (C3B+ACy — AB)
180° — (go° + go° — ¢) = ¢,
PR = CiR + PCs — CiCs = 90° + 90° — CedCs
90° + 9o° — (180° — 4) = 4,
Ay = RPC, = 180° — BPR = 180° — C\Cs = 180° — (C1d + ACy)
180° — (b 4+ 9o°)= b,

by = PCy=BC; — BP = 90° — ((1P — (1B) = 9o° —(go° — a) =a;
hence, as = B, By =1¢, Co =A, A, = b, by = a.

(%]

I

Now the parts of triangle III may be obtained from those of II, the
parts of IV from those of II1, and the parts of V from those of IV, in
exactly the same way that the parts of 11 werc obtained from those
of I. Writing corresponding parts under each other, and remember-
ing that to obtain the circular parts we must replace the hypotenuse
and angles of each triangle by their complements, we have the follow-
ing table:

Actual Parts Circular Parts
Triangle 1 a,B,c, A, b, a,B, 7, 1,b
Triangle 11 Byc,4,b,a B,c,4,ba
Triangle 11T A,b,4, B ¢&,4,b,a,B
Triangle IV Ad,b,a, B, ¢ 4,b,a B,
Triangle V b, a, B, c, A b,a, B, 7, 4

The column on the right not only shows that each triangle has the same
circular parts taken in the same order, but also that the middle part
Z of the first triangle is successively replaced by 4, b, @, B in the
other four. Now it was shown in Art. 13 (10), (9), that for the tri-
angle 4 BC,,

cosc = cot 4 cot B, or sin¢ = tan . tan B, D

cosc =cosacosbh, or sinc¢= cosacosb, II)
hence formulas (I) and (II) hold when any part other than ¢ is taken

for the middle part, and thus Napier’s rules are shown to be neces-
sarily true.
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EXERCISE 3

1. Apply the ten formulas for the right spherical triangle to the
polar and obtain ten formulas for the quadrantal spherical triangle.

2. Write out the ten equations for the right spherical triangle by
means of Napier’s rules.

3. From the relation cos ¢ = cos a cos b show that if a right tri-
angle has only one right angle, the three sides are either all acute, or
one is acute and the other two obtuse.

4. From the relation cos 4 = cos a sin B show that the side ¢ is
in the same quadrant as the opposite angle 4.

5. If in a right spherical triangle ¢ = ¢ = go°, prove that cos b =
cos B.

6. Also if @ = b, prove that cot B = cos a.

Prove the following relations for the right triangle 4 BC:

7. cosil — sin®B = — sin? sin%4.

8. sind sin2b = sincsin 2 B.

9. sin%e 4 sin% — sin%c = sin’e sin?.

10. sin.1 cosc¢ = cosa cos B.

11. sind = cosc lana tan B.

12. sin%4 cos? sin% = sin% — sin?%.

18. To Determine the Quadrant of the Unknown Parts in a
Right Spherical Triangle. When an unknown part is found from
its cosine, tangent, or cotangent, the sign of the function shows whether
the part is in the first or second quadrant, that is, whether it is less
than ¢go° or grcater than go°. In the cases where the unknown part
is found from the sine, the following theorems cnable us to tell, in every
case in which the triangle has but one solution, whether the part is
greater or less than go°.

1. At least ome side of every right spherical triangle is in the first
quadrant, the remaining two are either both in the first quadrant or both
in the seccond. For, since the cosine of an angle in the second quadrant
is negative, it is plain that the equation

cos ¢ = cos a cos b (Art. 13 (10))

must have either none or two of the angles a, b, ¢ in the second
quadrant.

I1. Either of the obligue angles of a right spherical triangle is in the
same quadrant as its opposite side. For since

sin A = cos B/cos b (Art. 13 (7))
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and sin 4 is always positive, it is plain that cos B and cos b must either
be both positive or both negative, that is, B and b and similarly 4
and @, must be in the same quadrant.

19. The Ambiguous Case of Right Spherical Triangles.
When the given parts of a right triangle are an angle and the side
opposite, the triangle has two solutions. For, the
given parts being A and a (Fig. 20), the co-lunar
triangle A’BC as well as the triangle 4 BC has the
given parts. Notice that A'B and A'C are the
supplements of /1B and AC, respectively, and that
angle A’BC is the supplement of angle 4BC.
Both sets of values are given by the formulas, for,
A and a being given, ¢, b, and B are found from
their sines (Art. 13, Equations (1), (5) and (8)).

20. Solution of Right Spherical Triangles. Napier’s rules, or,
if it is preferred, the ten formulas in Art. 13, enable us to solve every
conceivable right spherical triangle, two parts being given. The
procedure in any given casc is as follows:

I. We consider three parts, two of which are
the given parts and the third the part to be
found. If these three parts are adjacent we take
the middle onc for the middle part, if two only
are adjacent we take the remaining one for the
middle part and by Napier’s rules write down
the formula relating the three parts.

Thus if A and ¢ are the given parts (Fig. 21), and
bis to be found, we take A for the middle part and by Napier’s first rule,

sinAd = tan b tan ¢, that is, cos 4 = tan b cot c. (1)

If B is to be found, we take ¢ for the middle part, and again applying

Napier’s first rule we have

sin¢ = tan 4 tan B, that s, cos ¢ = cot 4 cot B. (2)
If g is the part required, we take a for the middle part, and applying
Napier’s second rule, we have

sina = cos 4 cos ¢, that is, sina = sin 4 sinc. (3)

II. Next we solve the equation for that function which contains
the unknown part. Thus to find 4, we have from equation (1) above,
tan b = cos A4 tan ¢, to find B we have from (2) cot B = cos ¢ tan 4,
to find @ we use equation (3) as it stands.

A

>

Fig. 21.
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III. By means of the equations thus obtained and the use of tables
we compute the unknown parts, remembering,

(a) If the unknown part is found from its cosine, tangent, or co-
tangent, the algebraic sign of the function determines the quadrant
of the angle.

(b) If the unknown part is found from its sine, the quadrant of the
angle is determined by one of the theorems of Art. 18.

(c) If the given parts are an angle and the side opposite, each
unknown part has two values which are supplements of cach other.

IV. Check. When the unknown parts have been computed, their
correctness should be checked by the formula obtained by applying
Napier’s rules to these parts. Thus in the above example, after
b, B, and a have been computed their values must satisfy the formula
(a being the middle part)

sin e = tan B tan b, that is, sin @ = cot B tan b.

ExaMpPLE 1.
Given v Required
A = 67° 34" 40", b = 160° 40’ 56",
¢ =137°24" 54" B = 150° 44’ 00",
4N a = 35° 42" 57".
Fig. 22.
Solution.
To find b. To find B.
cos A = cotctand, cos ¢ = cot A cos B,
or, tan b = cos 4 tanc. or, cotB=cosctand.
log cos A = 9.58141 log cos ¢ = 9.86704n
log tan ¢ = 9.96334n* log tan A = 0.38445
log tan b = 9.544757 log col B = 0.251497
= 160° 40’ 56", B = 150°44’ 00"
To find a. Check.
sine = sin.1 sinec. sin ¢ = cot B tan d.
log sin 4 = 9.96586 log cot B = o.251497
log sin ¢ = ¢.83038 log tan & = 9.544757
log sin a = 9.79624 log sin @ = 9.79624 (check).

a = 35°42" 57"
* n written after a logarithm means that the number of which the logarithm is
taken (in this case tan ¢) has the negative sign.
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In this case, since tan b and cot B are negative, b and B must be
taken in the second quadrant, while ¢ is taken in the first quadrant
since by Art. 18 it must be in the same quadrant as the opposite
angle 4.

EXAMPLE 2.
Given
B = 25° 36’ 30",
b = 24° 20’ 45"

Required
A = 81° 48’ 30",
A" = ¢8° 11’ 30",

¢ = 72°30 45",
¢ = 107° 29 15",
a = 70° 44’ 45",
a' = 109° 15" 15",
Solution.
To find 4. To find ¢.
cos B = sin 4 cos b, sind = sin B sin,
or, sin 4 = cos B/cos b. or, sinc = sinb/sin B.
log cos B = g.95510 log sin b = 9.61515
colog cos b = 0.04045 colog sin B = 0.36430
log sin 4 = 9.99555 logsinc = 9.97945
A = 81°48' 30". ¢ = 72°30 45"
A = ¢8° 11’ 30", ¢ = 107° 29’ 15"
To find a. Check.
sin @ = cot B tan . sin ¢ = sin ¢ sin 4.
log cot B = 0.31940 log sinc = 9.97945'
logtand = ¢.65560 log sin 4 = 9.99555
logsineg = g.97500 log sin @ = 9.97500 (check).
a = 70°44' 4511.
a = 109° 15 15",

In this case there are two solutions. By Art. 18 @ and 4 must be
in the same quadrant, hence the acute values of both ¢ and 4 belong
to one triangle and the obtuse values to another. Again, by Art. 18,
the three sides g, b, ¢ are either all in the first quadrant, or two are
in the second quadrant, hence ¢ is in the same triangle as ¢, and ¢’ is
in the same triangle as o'.
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When no answer is given the results must be checked. For the
number of significant figures to be retained in the answer see Pl

SPHERICAL TRIGONOMETRY

EXERCISE 4

Trig., Art. 44.

Solve the following right spherical triangles when the parts given

are:

I.

© o

10.

I12.

13.

14.

15.

16.

a=81°25,b=r101°15%.

Ans. A = 81°35', B = 101°08', ¢ = 94°40".

c=86° 51, B =18%04’.

Ans. b= 18%°02', a = 86°41, A = 88°;38".

a = 70° 28, ¢ = 98° 18’.

Ans. A = 72°15, B=114° 17, b = 115° 35'.

¢ =118% 40", A = 128°00'.

Ans. a = 136°16', b= 48°24’, B = 58°27.

A =81°13", B=065°24'.

Ans. a = 80° 20/, b = 65°05', ¢ = 85° 56",

b= 112°49', B = 100° 27'.

Ans. a = 26°00', A = 27°53', ¢ = 110° 24';
a = 154° 00, A’ = 152°07’, ¢’ = 69° 36'.

¢ = 81°10, a = 100° 47
A4 =75°23", B=175"23".

a=172°15, B=83° 25"

b= 148° 28’, B = 101° 04,

a = 43° 40.5', c = ¢98° 29.1'.

Ans. A = 44°17.0", B = ¢8°11.4/, b = 101°46.3'.
a = 28°47.0", b= 110° 27.3".

Ans. A = 30°23.1", B = 100° 10.9/, ¢ = 107° 50.2'.
b= 174°21.9', A = 38°357.2".

Ans. B = 80°14.7, a = 37° 54.1', ¢ = 77° 43.3’.

A = 49° 15.0/, B = 52° 26.0’.

Ans. a = 34°33.7", b = 36° 24.6', ¢ = 48° 29.3".

¢ = 50°20.2", A = 101° 2.4

Ans. a = 131°01.9, b = 166° 29.5", B = 162° 20.1'.
a = 32°10.8, A = 42° 24.0".

Ans. b= 43°34.8", B = 060°43.2', ¢ = 52°06.0";

b = 136° 25.2", B' = 119° 16.8', ¢’ = 127° 54.0'.
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17. ¢ =95°26.2", b = 12° 37.8'.
18. a=119°56.1', b = 151° 43.6'.
19. A = 70°56.9', B = 39° 25.0".
20. b= 112°24.8", B=94°58.9".
21. @ = 41° 50’ 20", b = 50° 18" 11",

Ans. A = 49° 19’ 29", B = 61°01’ 33", ¢ = 61° 35" 05"
22. ¢ = 110° 46’ 20", B = 80° 10’ 30".

Ans. b= 067°06" 53", a = 155° 46" 43", 4
23. b =96°49" 59”, 4 = 50° 12’ 04”.

Ans. a = 50°00 00", B = 95°14" 41", ¢ = 94° 23" 10".
24. A= 4()° 59/ 4211, B= 570 59/ 17//_

Ans. a = 36° 27" 00", b = 43° 33" 30", ¢ = 54° 20’ 03"
25. a=32°09" 17", ¢ = 44° 33" 17".

Ans. A = 49° 20" 16", b = 32°41" 00", B = 50° 19’ 16",

’

153° 58" 24",

Il

26. b = 160° 00’ 00", B = 150° 00’ 00"
Ans. a = 140° 55" 09", 1 = 112°50" 17", ¢ = 43° 09’ 37"
al —_ 300 04’ SII" ‘1/ ()70 09’ 43’1, C’ = 1360 50’ 2311'
27. 60° 45" 45", B = 57° 50" 50"

A

28. ¢ = 120° 23" 56", 4 = 110° 34" 42".
a
A

It

29. 116° 52" 45", b = 16° 06’ 06"
30.
21. Solution of Quadrantal Triangles. The polar of a quadrantal
triangle is a right triangle which may be solved by the method of
Art. 20 and from it the required parts of the original quadrantal
triangle are obtained by means of the relations in Art. 7. Or we may
apply the right triangle formulas of Art. 13 to the polar and obtain a
new set of formulas for the solution of any quadrantal triangle.
Thus formula (1), Art. 13, viz., sin A = sin a/sin ¢, when applicd to the
polar triangle becomes sin (180° — @) = sin (180° — A4)/sin (180° — C)
or sin ¢ = sin A/sin C. Similarly we obtain each of the following
formulas for the solution of quadrantal triangles, C being the angle
opposite the quadrant c.
sin @ = sin A/sinC (1) tand = tan B/sind  (0)
sin b = sin B/sin C  (2) sina = cos b/cos B (7)
—cosa = tan B/tanC  (3) sin b = (safcos 4 (8)
—cosb =tanA/tanC (4) —cosC=cosAdcos B (9)
tane =tan4/sin B (5) —cosC = cotacotd (10)

= 81° 58’ 36”, a = 67° 20’ 30"
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ExampLeE. Solve the quadrantal triangle in which
a=97°24, A =103°12', ¢ = go°.
Solution. The polar triangle has the parts
A = 180° — 97° 24’ = 82° 36/, @ = 180° — 103° 12’ = 76° 48/,
C = 180° — go° = ¢o°.
Solving this right triangle by the method of Art. 20 we find
B = 34°20, b= 3337, ¢ = 79°02;
B’ = 145° 40/, bV = 14623, ¢’ = 100°58.

A The required parts of the quadrantal triangle

are, therefore,
b= 180° — 34° 20" = 145° 40/,

b = 180° — 145° 40’ = 34° 20,
B = 180" — 33°37 = 146° 23/,
B = 180° — 146° 23’ = 33°37/,
C =180° — 79°02’ = 100° 58/,
C’ = 180° — 100° 58’ = 7¢9°02’.

Fig. 24 rcpresents both solutions geometrically.

22. Special Formulas for Angles near 0°, 90° or 180°.

An

angle near o” or 180° can not be accurately determined from its
cosine, nor an angle near ¢o° from its sine (see PL. Trig., Art. 21); in
such cases the formulas of Art. 13 are, therefore, no longer adequate.
The difficulty may be avoided by employing the following formulas:

A near o°® or 180°, tan?l.l = sin(c — b)/sin (¢ + b).
B near o° or 180°, tan®3 B = sin(c — a)/sin (¢ + a).
a ncar o’ or 180°, tan’}a = tan} (c+ d)tani (c — b).

b near o° or 180°, tan®}d tan 3 (c + a) tan 3 (c — a).
¢ near o° or 180°, tan®%¢ —cos (A + B)/cos (4 — B)
A near go°, tan2(35° — } 4) = tan} (c — a)/tan } (c + a)
tani (B — b) tan} (B + d).
tan 3 (c — b)/tan (c + &)
tan} (4 — a) tan 3 (4 + a).
a near go°, tan?(45° — } @) = sin (B — b)/sin (B + b).

b near 9o°, tan?(45° — 3b) = sin (4 — a)/sin (4 + a).
¢near 9o°, tan?(45° — 1c¢) =tany (4 — a)/tan} (4 + @)
tan% (B — b)/tan % (B + b).

I

B near go°, tan?(45°— 3 B)

il

1

(1)
(2)
(3)
(4)
(s)
(6)
(7)
®
(9
(10)
(11)
(12)
(13)
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To deduce (1) we have
cos A = tan b/tan c, (Art. 13 (3))

1—cosd tanc—tanb

I+cosdA tanc+ tand’ (Comp. and div.)

I--cosA=I—(1—-2s_ili-§~_4__)
1+cosA 14 (2cos?3d—1)
and
tanc —tand _ sinccosd — coscsind _ sin(c — b).
tanc+tand sinccos b+ coscsind sin(c-i—b)7
(Pl. Trig., Art. 109)

= tan?} 4, (Pl Trig., Art.111)

hence tan?} 4 = sin(c — b)/sin(c + ).
Again, to deduce (13) we proceed as follows:
sin ¢ = sin b/sin B, (Art. 13 (2))

1—sinc _sinB—sind
T T s 7?

1+ sinc smB-i—smb

1 —sinc 1—291nzccoszc (cos,c——smzc)2

(Comp. and div.)

1+sinc 1+ 2siniccosic  (cosdc sinke)?
' (Pl. Trig., Art. 111)
(1 —tan}0)?

“ (1+tan} “¢)?

= tan® (45° — 3 0),
(Pl Trig., Art. 110)
and
sin B—sinb _2cos3 (B+b)sinj (B—b) ta}nz (B—b)
snB+snb 2sink(B+b)cosi B—b) dlank (B+b)
(PL. Trig., Art. 113)
hence tan? (45° — 3 ¢) = tan} (B — b)/tan} (B+ b).

All the other formulas given above may be deduced in a similar
manner.

EXERCISE 5

1. Solve the quadrantal triangle given in Art. 21 by using formu-
las (8), (5), and (1) of that article.
Solve the following quadrantal triangles:
2. C=067°12/,b=123°48".
Ans. B = 130°00, A = 52°56/, a = 59°56".
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3. C=141°02.8, 4 = 142° 05.9".
Ans. B = 170° 15.0, b = 164° 29.3’, @ = 102° 10.5'.
4. a= 174" 12" 49", b = 94° 08’ 20".
Ans. A = 175° 57 10”, B = 135° 42" 50", C = 135° 34’ 07"
5. a=091°30, b =92° 24"
6. C = 136°14.7", A = 141° 45.5'.
7. a = 112° 56" 50", C = 74° 45" 36".
8. In a right spherical triangle one side is 95° 52’ 15" and the
hypotenuse is 95° 44’ 12", Find the angle opposite the given side.
Ans. 91° 15" o1”.
9. Solve the right spherical triangle in which e = 37° 40’ 12",
¢ = 37° 40 20".
Ans. A = 8¢° 25" 32", B = 00° 43’ 32", b = 00° 26" 36".
10. Solve the right spherical triangle in which ¢ = 34° 06’ 13",
A = 34°07 41".
Ans. b= 87°32" 39", B =88°37" 21", ¢ = 87° 58’ 00”.
11. Prove formulas (2), (5) and (10), Art. 22.
12. Verify formulas (3), (6) and (7), Art. 22.

23. Oblique Spherical Triangles Solved by the Method of
Right Triangles. Just as every plane triangle can be solved by
considering it the sum or difference of two right triangles formed by
drawing a perpendicular from a vertex of the triangle to the opposite
side or opposite side produced (Pl. Trig., Art. 52), so likewise every

Fig. 25. Fig. 26.

oblique spherical triangle ABC may be solved by considering the
triangle as the sum (Fig. 25) or the difference (Fig. 26) of the two
right triangles ACD and BCD formed by the perpendicular arc of a
great circle drawn from one of the vertices to the opposite side or
opposite side produced.
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We shall denote by m and # the segments AD and DB into which
the perpendicular p = CD divides the opposite side ¢, and by M and
N the angles ACD and DCB into which the angle C is divided by the
same perpendicular. We then have

c=m+mn, C=M+ N (Fig. 25); ¢=m—n, C=M —N (Fig. 26).

The method of solving oblique spherical triangles by dividing them
into right triangles, while exceedingly simple in principle, is not the
most convenient method nor the method commonly employed in
actual computation. Better methods will be developed in the next
chapter and the student is expected to familiarize himself with the
methods there presented rather than to depend on the method of the
present article.

Case ITII.  Given two sides and the included angle, b, ¢, 4.

Fig. 27. Fig. 28.

Solution. 1. In triangle ACD find p, M and m.

2. n= ¢ — m (Fig. 27), or n = m — ¢ (Fig. 28).

3. In triangle BCD find N, ¢ and B.

4. C= M + N (Fig. 27), or C = M — N (Fig. 28).

5. Check. Repeat the solution drawing the perpen-
dicular from B to the side AC.

Case IV. Given two angles and the included
side, B, C, a.
Solution. Solve the polar triangle by Case
IIT and then compute the unknown parts of the A
original triangle. A w
Case V. Given two sides and the angle oppo- 50

site one of them, ¢, b, 4. Fig. 29.

Solution. In this case there are two solutions, provided that e is
intermediate in value between p and both 5 and 180° — b (Art. 11).
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1. In triangle ACD find p, M = ACD, and m = AD.

2. In triangle BCD find N = BCD, B, and » = DB,
AB'C = 180° — B.

3. ACB=M+N,ACB' =M — N, AB=m+n,AB' =m — n.

4. Check. Assume b, ¢, A as the given parts and find the other
parts by Case IIT.

Case VI. Given two angles and the side opposite one of them,
A, B, a.

Solution. Solve the polar triangle by Case V and from it find the
unknown parts of the original triangle. As there may be two solu-
tions in Case V so Case VI may have two solutions.

Case I. Given the three sides, a, b, c.

A

D Da B

Fig. 30. Fig. 31.

Solution. In the triangle ACD we have by Napier’s rule

sind = cos pcosm, or cos p = cos b/cos m.

Similarly we have in the triangle BCD
sin @ = cos p cos », or cos p = cosa/cosn.
Hence

cosa  cosm .. cosa—cosb cosm— cosn
—— = ——, from which — = - —
cosb cosm cosa+ cosb cosm -+ cosm

Now

cosa—cosh _ —zsin} (e+0) sin} (a—0) _ . 1
cosatcosb 2 cosi (a+bd)cosk (a—b) tang (a-+b) tani(e — b),

so that
tani (¢4 b)tan} (¢ — b) = tan} (m + ») tan} (m — n),
from which
tani(m —n) =tan} (¢4 d)tani (e — d) cotic,
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if m+ n = ¢ (Fig. 30),
or tany (m+n) =tani (e +b)tand (e — b) cot e,
if m—n=c (Fig. 31).

We have, therefore, the following steps:
1. Find } (m — n) (Fig. 30), or } (m + =) (Fig. 31),
from the relation
tan} (m —n) =tani (a+bd)tank (e — b) cot k¢,
tani (m + n) = tanj (@+ b) tani (a — b) cot & c.
m=3m+n)+3m—n),n=%m+n) —%(m—n).
In triangle ACD find 4 and M.
In triangle BCD find B and N.
C =M+ N (Fig. 30), or C = M — N (Fig. 31).
6. Check. Repeal the solution drawing the perpendicular from
B on AC or from 4 on BC.

Case II. Given the three angles, 4, B, C.
Solution. Solve the polar triangle by Casc I, and from it compute
the unknown parts of the original triangle.

R

EXERCISE 6

1. Show how Case IV may be solved by means of right triangles
without using the polar triangle, and outline the steps of the solution.

2. Prove Bowditch’s Rules for Obliqgue Spherical Triangles which
may be stated as follows: If a spherical triangle is divided into two
right triangles by a perpendicular let fall from one of the vertices to
the opposite side, and if in the two right triangles the middle parts
are so chosen that the perpendicular is an adjacent part in each
triangle, then

The sines of the middle parts in the two triangles are proportional to
the tangents of the adjacent parts;
but if the perpendicular is an opposite part in each triangle, then

The sines of the middle parts are proportional to the cosines of the
opposite paris.

As in the case of Napier’s rules, the parts referred to in these rules
are the circular parts of the two triangles. By the use of Bow-
ditch’s rules the solution of oblique spherical triangles by means of
right triangles may be somewhat shortened.
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Solve the following triangles by means of right triangles:

3. Givend = 88° 24/, c = 56° 48/, A = 128°16/;
find B = 65° 13/, C = 49° 28/, a = 120° 11",

4. Given. @ = 103° 44/, b= 6512/, C=97°34".

5. Given ¢ = 148°34.4, b= 142°11.6/, A = 153° 17.6;
find ¢ = 62°08.6’, B = 148°06.3", C = 130°21.2,

¢ =7°18.4, B =31°53.7, C' =6°17.6.

6. Given 4 = 110° B = 62° a = 49°.

7. Given 4 = 80° 20.2/, B =73°46.7", C = 54"08.5;
find a = 04° 47.2', b=061°47.3", c¢=48%03.4".

8. Given @ = 31°11" 07", b= 32°19' 18", ¢ = 33° 15’ 21"}
find 4 = 59° 29" 42", B = 62° 49’ 42", C = 65° 50'48"".

9. Givena = 87°45" 24", b= 96° 12’ 15", ¢ = 100° 08’ 56".

10. Given 4 = 87° 45’ 24", B = 96° 12’ 15", C = 100° 08’ 56",



CHAPTER III
PROPERTIES OF OBLIQUE SPHERICAL TRIANGLES

WE shall now develop a number of formulas involving the parts of
any spherical triangle, from which, if any three parts of the triangle
are given, the remaining parts may be derived by computation with-
out first dividing the triangle into right triangles as was donc in the
last article. Then, in order to facilitate the work of computation,
we shall transform these formulas so as to adapt them to the use of
logarithms. The actual application of the formulas to the solution
of triangles we shall reserve for a separate chapter.

24. The Law of Sines. (@) First Proof. Let ABC be any
spherical triangle, p the perpendicular from one of the vertices C of
the triangle to the opposite side AB (Fig. 32) or AB produced (Fig.

33)-
A A
s " ° " v

Tig. 32 Fig. 33.

By Napier’s rules, or the formulas of Art. 13, we have

from triangle ACD sinp = sinbsin 4,
and from triangle BCD sin p = sina sin B (B acute),
or sin p = sin a sin (180° — B)

= sinagsin B (B obtuse).

Hence, whether the perpendicular falls within the triangle or without,
we have
) sinp = sinasin 4 = sinasin B. 50
Advancing letters, sinc¢sin B = sinbsinC,
singsinC = sincsin 4
33
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These equations may also be written in the form

sina _ sinb=sinc’ ()
sin4 sinB sinC
or in words, The sines of the sides of a spherical triangle are propor-
tional to the sines of the opposite angles.
(b) Second Proof. Let ABC (Fig. 34) be a spherical triangle and
O the center of the sphere on which the triangle lies. Draw the radii
0OA, OB, OC. From C draw CD perpendicular to the plane of AOB
and through CD draw planes CDE and CDF perpendicular to OA4
and OB respectively. Then each of the triangles, OEC, CDE, CDF,
OFC, is right-angled, the middle letter being in each case at the right
angle. Also since CF and DF are perpendicular to OB, angle CFD
is equal to the angle B, and similarly angle CED is equal to the angle
A.
Now CD = CEsinCED = CEsin 4,
and CD = CF sin CFD = CF sin B,
CE = OC sin COE = OC sin b,
CF = OC sin COF = OC sin a.

Therefore, substituting in the first two
cquations for CZ and CF their values
Fig. 3a. {from the last two, we have

OCsinbsin 4 = OC sin a sin B,

from which
sina/sin A = sin b/sin B.

26. The Law of Cosines. (a) First Proof. In Figs. 32 and 33
let us denote AD and DB by m and 7 respectively. By applying
Napier’s rules, or the formulas of Art. 13, we find

from triangle BCD COS @ = COS P COoS 72,
and from triangle ACD cos b = cos p cos m.
Now n = ¢ — m (B acute), or n = m — ¢ (B obtuse),

and since cos (¢ — m) = cos (m — c), we have in either case on elimi-
nating cos p and putting for # its value
cos a = cos b cos (¢ — m)/cos m

cos ¢ cos m + sin ¢ sin m
cos m

= cos b

= cos b cos ¢ + cos b sin ¢ tan m.
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But by Napier’s rules tan m = tan b cos 4, hence substituting this
value in the last equation and remembering that cos b tan & = sin ,
we have

cos @ = cos b cos ¢+ sin b sin ¢ cos 4.
Advancing letters, cos b = cos ¢ cos a + sin ¢ sin @ cos B, (2)
cos ¢ = cos @ cos b+ sin a sin b cos C.

These formulas embody the Law of Cosines: The cosine of any side of
a spherical triangle is equal to the product of the cosines of the other two
sides plus the continued product of the sines of these two sides and the
cosine of the included angle.

Fig. 32. Tig 33.

() Sccond Proof. In Fig. 34 draw EG parallel to DF and DH
perpendicular to EG, then angle DEH equals angle AOB or ¢, and we
have

np _ HD,D&.-CE—sincco@A in b
L R s A sin b,

Ip _OF 0G _OF 0G OFE
0C =0¢ ~0C=0C " 0L o = c0s@e — cosccosb.

Equating these two values of ZID/OC and solving for cos @ we find
cos a = cos b cosc + sin b sin ¢ cos 4.

26. Relation Between Two Angles and Three Sides.
The second of the equations (2) may be written

cos ¢ cos a + sin ¢ sin ¢ cos B = cos b,
and the first multiplied by cos ¢ gives
cosc cos a = cos b cos? ¢ + sin b sin ¢ cos ¢ cos 4.

Subtracting the second of these equations from the first gives

sin ¢ sin @ cos B = cos b (1 — cos?¢) — sin b sin ¢ cos ¢ cos 4.
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Now 1 — cos?¢ = sin?¢, hence we may divide the equation by sin c,
and obtain

sin @ cos B = cos b sin ¢ — sin b cos ¢ cos 4.

Similarly, sine cos C = cos ¢ sin b — sin ¢ cos b cos 4.

sin b cos C = cos c¢sina — sin ¢ cos a cos B,

sin bcos 4 = cos a sin ¢ — sin @ cos ¢ cos B,

sin ¢cos 4 = cos @ sinb — sin @ cos b cos C,

sin ¢ cos B = ¢os b sin a — sin b cos a cos C.

27. Third Proof of the Fundamental Formulas. The three
equations (1) Art. 24, (2) Art. 25, and (3) Art. 26, may be derived
simultaneously by the method of analytical geometry.* Let 4BC be
any spherical triangle. Take O, the center of
the sphere, for the origin of a system of rec-
tangular coordinates, the planc of BOA for
the xy-plane, OB for the direction of the x-
axis, and the positive z-axis on the same side
of the plane BOA as the vertex C. Join O
and C. TFrom C drop the perpendicular CR
on BOY, and through CR pass a plane per-
pendicular to OB cutting OB in S. Then the
triangles CRS and CSO have right angles at R and S respectively,
and angle RSC equals angle B (why?). Denoting the coordinates of
C by x, y, 2 and the distance OC by 7, we have

0S = 0OC cos COS, or x = rcosa,
RS = SC cos RSC = OC sin COS cos RSC, or y = rsin a cos B,
RC = SC sin RSC = OC sin COS sin RSC, or s = rsin a sin B.

3)

Fig. 35.

If OA had been taken for the x-axis, the s-axis remaining unchanged,
A and a will change places with B and b respectively, and the y co-
ordinates will have opposite signs, so that the new coordinates 2/, 3/,
2’ of C will be

’

¥ =7rcosb, yy=—rsinbcosd, 2z =rsinbsin.1.

But these are the transformed coordinates of a system having the same
z-axis while the x- and y-axes are each turned through an angle ¢,

* The student without some knowledge of analytical geometry must content
himself with the proofs given in the preceding articles and those suggested in the
exercises which follow.
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hence the codrdinates #, y, z and «’, y’, 2’ are related by the trans-
formation formulas,

z2=12, x=21a"cosc— 3 sin¢, y=a'sinc+ y cosc.
Substituting in these three formulas the values of x, y, 3, 2, y, 5’ in
terms of r and the parts of the triangle, we have, after dividing out 7,

sin @ sin B = sin b sin 4, (1)
CoS @ = ¢c0s b cos ¢ + sin b sin ¢ cos A, (2)
sin @ cos B = cos b sin ¢ — sin b cos ¢ cos 4. (3)

28. Fundamental Relations for the Polar Triangle. If we
apply the formulas (1), (2), (3) to the polar triangle, by putting ¢ =
180° — A’, A = 180° — a’, etc. (Art. 7), and then drop the accents,
we find that (1) remains unchanged, while (2) and (3) give rise to the
new sets of formulas:

cos 4 =— cos B cos C + sin B sin C cos a,
€oS B =— ¢0s C cos 4 + sin C sin 4 cos b, (4)
€c0s C =— ¢0s 4 cos B + sin A sin B cos ¢,

and sin .4 cos b = cos B sin € + sin B cos C cos a,

sin .4 cos ¢ = cos C sin B + sin C cos B cos «,
sin B cos ¢ = cos C sin A + sin C cos 1 cos b,
sin B cos @ = cos 4 sin C + sin A cos C cos b,
sin € cos ¢ = cos A4 sin B + sin 4 cos B cos ¢,
sin € cos b = cos B sin 4 + sin B cos 4 cos c¢.

(5)

29. Arithmetic Solution of Spherical Triangles. The funda-
mental relations (1), (2), (3) enable us to solve every case of oblique
spherical triangles.

Case 1. Given the three sides, a, b, c.

1. The angle 4 may be found by the law of cosines.

2. The angles B and C may then be found by the law of sines.

Case 111.  Given two sides and the included angle, a, b, C.

1. The third side may be found by the law of cosines.

2. The angles 4 and B may then be found by the law of sines.

Case V. Given two sides and the angle opposite one of them, a, b, A.

1. The angle B may be found by the law of sines.

2. The third side might be found by the law of cosines but since the
law of cosines involves both sin ¢ and cos ¢ the formula solved for
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either sin ¢ or cos ¢ would involve radical expressions. These may be
avoided by using the formula

__cosacosb — sinasinbcos 4 cos B
B 1 — sin?) sin?4

Ccos ¢ ’

which is obtained by eliminating sin ¢ from the formulas (2) and (3)
of Art. 27.

3. The angle C may now be found by the law of sines.

Cases II, IV, VI. These may be referred to Cases I, III, V, re-
spectively, by making use of the polar triangle, or we may apply
formulas (1), (4), (5)-

While the fundamental relations (1), (2), (3) make it possible to
solve each of the six cases of triangles, it is clear that (2) and (3) are
not adapted to logarithmic computation. Therefore, in order to
facilitate computation, it is desirable to obtain other formulas which
enable us to use logarithms. Such formulas will be developed in the
following articles.

EXERCISE %
1. If @/, ¥/, ¢’ denote the sides of the polar triangle, show that
sing :sind :sin¢ = sina’ :sind’ : sinc.
2. If m is the arc joining the vertex C of a spherical triangle to the
middle point of the opposite side, show that
cosa~+ cosb = 2 cosm cos 3 c.

3. If the bisector of the angle C meets the opposite side in D, show
that
sina : sinb = sin BD : sin AD.
4. State in words the laws expressed
by formulas (4) and (5), Art. 28.
5. In Fig. 36 let £EGF be the triangle
in which a plane drawn perpendicular to
g an edge O4 intersccts the trihedral angle.

C

= e Then
Fie. <6 A GF? = OF?+ 0G? — 20F + OG - cos a.
18- 30 GF? = EF? + EG?— 2 EF « EG - cos A.

Subtracting and observing that OF? — EF? = OF?, OG? — EG* = OE?,

we find
20F +0G +cosa = 20FE*+ 2 EF +EG-cos A,
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which, on dividing by 2 OF - OG, leads to
cosa = cosbcosc sindsinccos 4.

This constitutes a fourth proof of the law of cosines.
6. From the law of cosines
cos A = (cosa — cos b cosc)/sinbsine,

show that
sif4 1 —cos’A _ 1—cos?a—cos® b—cos® c+ 2 cos a cosb cos ¢
sin% sin?a sin? g sin? b sin® ¢

The expression on the right is symmetrical in a, b, and ¢, hence

sin? A sinB  sin?C ., sin4d sinB sinC
e = oy = —. 5, [rom which =—— =", = = .
sin® a sin? b sin? ¢ sin @ sin b sin ¢

This constitutes a fourth proof of the law of sines.
7. Prove the relation
cotasind = cot A sin C 4 cos C cos b.
Suggestion. Multiply the third of the equations (2), Art. 23, by
cos b, substitute in the first equation and divide by sin b sin c.
8. By interchanging and advancing letters write down five other
equations like that in Problem 7.
9. Apply the relations of Problems 7 and 8 to the polar triangle.
Do the resulting equations express new relations?
10. Given b = 135°, ¢ = 45°, 4 = 60°; find the remaining parts
to the nearest degree.
Ans. a = 104°, B = 141°, C = 30°.
11. Given @ = 120°% b = 60°, A = 135°; find the remaining parts
to the nearest minute.
Ans. B = 45°00', ¢ = 78° 28", C = 53°08'.
12. Givena = 135° b = 135° ¢ = 45°; find 4, B, C, to the ncarest
minute. Ans. A = B = 114° 28', C = 65° 32'.

30. Functions of Half the Angles in Terms of the Sides.
From the law of cosines

cosa— cosbcosc

cosd = . ; 1 — 2sin?3 4 Pl. Trig., Art. 111
sin b sin ¢ 54, & )
therefore
. cosa— cosbcosc cos(b—c)—cosa
2sin?3d =1— = ( ) .

sinbsinc¢ sinbsinc
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Now
cos (b—c)—cos a=2sin § (a+b—c) sin § (a—b+c) (Pl Trig., Art. 113)
=2sin(s—¢)sin(s — b), wheres=3% (a+ b+ ¢),

therefore
2sin?l A = 2sin (s — b) sin (s — ¢;)
sinb sin¢
or
sinld = Sm(sfb)s%n(s—c).
sin b sin ¢
Similarly, sinlB = \/ sin (s — ¢) sin (s — a) ©
sin ¢ sina
sin} € =\/sm (c—a)sin(s—0),
sin a sin b

s=%(a+b+c).

Corresponding formulas for the cosines of half the angles may be
obtained by applying the formulas (6) to the co-lunar triangles. Thus
by applying the first formula to the co-lunar triangle AB’C whose
parts are (Art. 5) 180° — 4, B, 180° — (, 180° — 4, b, 180° — ¢,

sin s sin (s — a)

we obtain coszd= \/
sin b sin ¢

sin s sin (s — &) )

Similarly, cosiB =
sin ¢ sin @

sin s sin (s — ¢)

cosiC = - -
2 sin @ sin b

To find tan 4 A we divide sin } 4 by cos § 4 and obtain

tan &

1 S T —————
tanﬁA Sin (8—a)’
npo OE
sin(s—b)

t r (8)
tani C = _ﬂ_n_’f__’
2 sin (s — ¢)

where tan ko = \/sm (s — @) sin (.s —¥)sin(s —¢)
s s P,

k is the arcual radius of the small circle inscribed in the triangle
ABC, for if O (Fig. 37) represents the intersection of the arcs bisect-
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ing the angles of the triangle, OF, the arc drawn from O perpendicular
to one of the sides as AB, will be the arcual
radius of the inscribed circle. It follows, just as
in the case of plane triangles (Pl. Trig., Art. 68),
that AF = s — a, hence denoting OF by k and
applying Napier’s rules to the right triangle AOF,
we have

sin (s — @) = cot3 A tank,
or tani A = tan k/sin (s — a). Fig. 37.

31. Functions of Half the Sides in Terms of the Angles. If
we apply the formulas (6) and (7), Art. 30, to the polar triangle
(Art. 7), by putting 4 = 180° — @/, @ = 180° — A’, B = 180° — ¥/,
etc., dropping the accents in the final results, we obtain

— cos Scos (S — A)

sinia= . .
2@ sin B sin C
. — cos Scos (S — B)
sini b=
s sin € sin 4 ()
sin 1o/ =08 Scos (s —0)
3 sin 4 sin B
B
cosia /cos (8 —B)cos (S — C)
sin B sin ¢
cos 1 = \/cos (8 — €) cos (§ — A) (10)
sin € sin 4
cose= \/cos (5 —4) c9s (8 — B)
sin 4 sin B

S=3(4+B+0).

From (g) and (10) we find

tan ; @ = tan K cos (S — 4),
tan 3 b = tan K cos (S — B),

tan } ¢ = tan K cos (8 — O), (1)
11

where

tan K — \/ ~ —cosS
cos (8 — 4) cos (8§ — B) cos (8 — €)
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K is the arcual radius of the small circle circumscribed about the
tna.ngle ABC, for if O (Fig. 38) is the center of this circle, 04, OB,
OC the arcs joining the center to the vertices of
the triangle, OF the perpendicular arc from O to
one of the sides as BC, then 0OA =0B=0C=K,
the triangles A0OB, BOC, COA are isosceles, and
BF = FC = % a. Furthermore

A = BAO+ OAC = ABO + ACO = (B — OBF)
4+ (C—OCF)=B+C— 20BF,

hence OBF =3B+ C—-A4)=S—A4,

where S=3A4+ B+0).

If now we apply Napier’s rules to the right triangle BOF, we find

cos OBF = cot BO tan BF

or cos (S — A) = cot K tan } a,
from which tan ¢ = tan K cos (S — 4).
ExERCISE 8

1. Prove the formula for sin 3 C (Art. 30) directly by using the
relation
cos¢ — cosacosbh
sin @ sin b

cos C=1—12sin?’3C =

2. Prove the formula for cos ¥ A (Art. 30) directly by using the
relation
cos @ — €os b cos ¢

cosd =2co823 4 —1 =" -; :
sin b sin ¢

and following the method used in deriving the formula for sin § 4.

3. Prove the formula for sin § @ (Art. 31) directly by using the
relation
cos 4 + cos B cosC
sinBsinC

cos ¢ =1— 2sin?ia=

4. Prove the formula for cos ¢ (Art. 31) directly by using the
relation .

. cos A + cos B cosC
cosa =2cos}a—1= : - .
sin B sinC
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5. Derive the formula for tan % ¢ (Art. 31) by applying the formula
for tan 3 4 (Art. 30) to the polar triangle.

6. Derive the formula for cos} 4 by applying the formula for
sin § A to the co-lunar triangle ABC’.

7. Apply the formula for sin§ 4 to the co-lunar triangle 4'BC.
Does the resulting formula express a new relation?

8. The escribed circles of the triangle 4BC are the small circles
inscribed in the co-lunar triangles A’BC, AB'C, ABC'. By applying:
the formula for tan & (Art. 30) to thesc triangles, show that the arcual
radii, &,, ks, k. of the escribed circles are given by the formulas

tank, =\/sm s sin ('s —b)sin(s —¢)
sin (s — @)

=sinstan} 4,

tank, = sinstan3 B, tank.=sinstaniC.

9. By applying the formula for tan A (Art. 31) to the co-lunar tri-
angle A’BC, show that the arcual radius of the circle circumscribing
this triangle is given by the formula

an K. =4/ cos(S—A) 1
L Ka = s S cos (S— By eos S —¢) T tanae/eosS,
hence also tan Ky =—tan} b/cosS, tan K¢ =—tan}c/cosS.

10. Show that
2 tan K = cot k, + cot k, + cot k. — cot %,

and 2 cot k=tan K4+ tan Kp+ tan K¢ — tan K.

32. Delambre’s (or Gauss’s) Proportions. By PL Trig., Art.
106, we have

sin} (4 + B) =sin} A cos} B+ cos} A sin} B.

Substituting for sin § A, cos } B, cos A4, sin } B, their values from
(6) and (7), Art. 30,

sin (4 + B) = \/sm (s —bd) sin (s - c) sin s sin (s —d)
sin @ sin b sin®¢
/sin s sin (s—a) sin (s—c) sin (s—a)
+ \/ sin @ sin b sin%¢
_ \/sins sin (s — ¢) _ sin (s—b) +sin (s—a)

sina sin b sinc

s%Csin(s—b)‘-.-l-sin(s— a).
sin¢
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Also by PIl. Trig., Art. 111, 113,
sin(s —b)+sin(s —a) =2siny(s—b+s—a)cosd(s—b—s+a)
= 2sin§ccos}(a — ),

and sinc = 2sinjccos3ec,
hence -
sin (s — b) 4 sin(s —a) _cos} (¢ — b)
sin ¢ cosic
cosz (@ —b)cos}
and %1n,(A+B)———~?—(—T)-———«-
coskc

Similarly, we obtain corresponding formulas for cos & (4 + B),
sin 3 (4 — B) and cos } (1 — B). The four formulas, of which the
third and fourth may also he obtained by applying the first and sec-
ond to either one of the co-lunar triangles A’BC or AB'C, may be
written
sin}3 (4 + B)cosjc =cosi (« —b)cos3C,
cos3(4+ B)coslc=cos}(e+b)sin}c,
sin3 (4 — B)sinj¢ =sin} (e — b) cos ; C,
cosl(4 — B)sinjc=sin} (a4 b)sinjC.

(12)

These formulas are known as Dclambre’s or Gauss’s proportions or
cquations.

33. Napier’s Proportions. If of the equations (12) we divide the
first by the second, then the third by the fourth, then the fourth by
the second, and finally the third by the first, we obtain the following
four new formulas which are known as Napier's proportions or anal-
ogies.

cos i (a« — b)
1 . .B = . ! ,
tan } (.1 + B) cosg( +b)cot 3C
104 _ sin 3 (a—0d)
tan} (4 — B) S (e + b)cot w
tan 3 (@ 4+ b) = — cosg(4 - B)tan ’ ’
2 cosi(4 +B) 3%
1w —b smg(A —B) ;
tan§ (l'/ ) Smg(xl-i-B) c J

The second of these formulas may also be obtained by applying the
first to either of the co-lunar triangles A’BC or AB’C, and the third
and fourth by applying the first and second to the polar triangle.
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If we divide the first of the equations (13) by the second, or the
third by the fourth, we obtain the low of tangents
tanﬁ(a+b) tan,(A—{— B)
tan 3 ((l — b) tan 3 (xl — .l))

34. Formulas for the Area of a Spherical Triangle. It is
shown in Solid Geometry that the area of a spherical triangle is given
by the formula

T R?® E°

T="1g55 "’ (14)

where R is the radius of the sphere, and E° the Spherical Excess
expressed in degrecs, that is E° = 4 + B + C — 180°.
If E is the spherical excess expressed in radians, E = E°+m/180, and

(14) becomes T= R?E. (r3)
For a unit sphere (R = 1) T=E, (16)
hence we have

Theorem I. The area of a spherical iriangle on a unit sphere is equal
to the spherical excess expressed in radians.

Theorem IT.  The area of a spherical triangle on any sphere is cqual
to the area of the corresponding triangle on a unit sphere mulliplied by
the squarc of the radius.

The problem of finding various expressions for the area of a spheri-
cal triangle resolves itself, therefore, into the problem of finding
various expressions for the spherical excess I.

(@) In terms of the angles, A, B, C.

E=28—mw, where S=51(4+ B+ C). (17)

() In terms of the sides, a, b, c.

We have

sinfE=sin(S—3n)=sin[i(4d+B)+1(C—m)]
=sini (4 4 B)sini C — cos§ (4 4 B) cos 3 C.
Substituting for sin 3 (4 4+ B) and cos 3 (4 + B) their values from
(12), we have
sinlE = sm,»C(‘os2
cos3c

[cos 3 (¢ — b) — cos} (a+B)]

sm sin 7 ¢ 1 Ccos 2

2sintasinf b
" cosic ( asing ).
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Finally by putting for sin 3 C and cos } C their values from (6) and (7)
we arrive at
Cagnoli’s Formula,
n

inl
sing E = (=7 18
2 2cosjacosibceosic (18)

where n = Vsin s sin (s — @) sin (s — b)sin (s—¢) :

Or we may proceed as follows: 3 (C— E)=3r—3 (414 B),

and therefore, sin} (C — E) = cos } (.1 + B).

This value substituted in the second of the equations (12) gives
sinl (C—E) :sinlC=cos}(a+5):cosic.

From this proportion we have by division and composition

sm,,(—c.m,((—E) cos?c—coy(a—}—b).
sinfC+sink (C —E)  coskc+ cost (a+b)

On reducing each member of this equation by means of the relations
of Art. 113 (PL Trig.), we obtain

tan} Ecot} (2C — E) =tan}stan} (s — o);
1n like manner, by substituting cos } (C — E) = sin § (.1 4 B) in the
first of the equations (12), we find
tand Etan ] (2C — E) =tan (s — a)tan} (s — b);
hence on multiplying these two equations and extracting the square-

root we obtain

Lituilier's Formula,

tanl} E=Vtanistani(s— «)tani(s — d) tan i (s — ¢). (19)
(¢) Interms of two sides and the included angle, a, b, C.
s _sin(S—3m _ —cos3 1+ B+CO)
tand L= S =in = snl(lFBFO
ﬁinz(l—}-l'l)'ain2 —cosz(1+B)coq}C
siny (4 + B) cos3 C + cos % (A + B) sin}
Substituting for sin 3 (1 4+ B) and cos ¥ (4 + B) their values from
(12), we have
tan} E = qlnchoqu[cos%(a —b) —cos 3 (a+ b)]
cos} (¢ — b)cos®} C+ cos} (a+ b)sin23 C’
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which readily reduces to

tan 3 E =
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tan j @ tan } b sin €
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(20)

1+ tan jatanj b cos c’

36. Plane and Spherical Triangle Formulas Compared.
The student will have observed that there is a striking resemblance
between the formulas relating to plane triangles and certain of the

formulas of the present chapter.

In the table below are arranged

Plane Triangles

I. Law of Sines
e b«
sind snB snC

II. Law of Costnes

B+

— 2bc cos A

a?

I11. Doublc Formulas
siny (A — B)+}«¢
T@—=10b)csiC
cos 3 (I —DB)-3¢
J(a+0)siniC

IV Law of Tangents

i(,‘{ + b) _ tan ;‘,A(A + 1})
3
2

(@—10) tan}(d — B)

V. alf-angle Formulas
an A =4/ __1'7_(: =0
? \/ be

\>(\ —a
s 5 A = \/ b{;-i—)

_k

S —a

———
_ (s —a)(s —b) (s —0)
- ESIETI

tan }

VI. Area

1T = V/f.-.‘_;“.-‘_—_”.f.if:
4
2 2 2 2

Spherical Triangles

1 Law of Sines
sina _ sinb _ snc¢

sinAd  smB  sinC

11. Law of Cosines
€cos a = Cos b cos ¢
+ sind sin ¢ (os A

IIT  Delambre’s Proportions
sin } (1 — B) sin 3¢
=sin } (@ — b) cos } C
cos 3 (A — B) sin 3¢
=sin J(@a+b)sin} C

1V. Law of Tangents
tan } (@ +b) tan } (4 4 B)

tan L (A — B)

tan } (@ — b)

V  Half-angle Formulas
P /srmr(s — b) sin (s :_c)
sin § .1 \ sinb sinc¢
s !4 = \/sm s sin (s — a)

2 sin b sin ¢
tan £
1 —_ - ——
tan } 4 = Gn =@
tank=\/3" (=) sin (s —b) sin (s —¢)
sins
VI. Area
tan } E

s—C

—a —b
= \/ tan? tan2=2 tan T2 tan
2 2 2

T =9E
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in parallel columns the more important formulas for plane triangles
and the corresponding formulas for spherical triangles. The form of
some of the formulas for plane triangles has been slightly changed in
order to manifest the resemblance in the most striking manner.

36. Derivation of Formulas for Plane Triangles from Those
of Spherical Triangles. We will now show that the resemblance
between the two sets of formulas is not accidental but is due to a
definite relation between plance and spherical triangles. If the vertices
of a spherical triangle remain fixed while the radius (r) of the sphere
on which the triangle is situated is indefinitely increased, the spherical
triangle will approach as a limit the plane triangle having the same
vertices. Conscquently, for the limit r = oo, the formulas for the
spherical triangle must reduce to those for the plane triangle.

Let o/, b’, ¢/ represent the sides of the spherical triangle expressed
in radians, then ¢’ = a/r, b = b/r, ¢ = c¢/r, where a, b, ¢ repre-
sent the actual lengths of the sides (Pl. Trig., Art. go). Also by Pl.
Trig., Art. 176, we have

a2

a a®

: ’ ’

sing’ = - — - -— 4e¢tc.,, cosa’ =1 — + ——= — etc.
r 3l ’ 2172 ’

4'r‘

, a a?
= — tc.
tan a ’ 3r3+ec

and similar expressions for sin ¥, sin ¢, ctc.

These expansions involve the radius of the sphere. If now we
substitute these expansions in any formula relating to spherical tri-
angles and cvaluate the resulting expression for » = oo, the resulting
formula will express the corresponding relation between the sides and
angles of the plane triangle. We will illustrate the method by some
examples.

(a) The Law of Sines.

3

a
. . - = etc.
sind _sine’ _sina/r ;l 3 1 ete,

sinB_ sind _ sinb/r

ﬂlu-' I

'r3 -+ etc.,
Multiplying both numerator and denominator of the expression on
the right by », and making r infinite, we obtain

sin A

nB= b , the law of sines for plane triangles.
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() The Law of Cosines.
cosa’ = cosd’ cosc’ + sind’ sinc’ cos A

a b ¢ . b . ¢
or cos— = Cos—Cos— -+ sin-sin- cos 4,
r r r rr
hence
b? b ) ¢? c?
r2+4 r4+ (1_2!r2+;1.!17‘+ I_;I}§+4T;‘+)

b b? ¢ A3
(st 5t oo
If we multiply both sides of the equation by — 2r% drop the terms
which are common to both sides of the equation, and then make »

infinite, we have
a? = b2+ ¢* — 2 bccos A, the law of cosines for plane triangles.

(c) The Law of Tangenls.
a+b a+d (a+b)3

tan} (4 + B) _ tan 3 (@' +0") _ tan 2r _ ar + (27)3 +
tani({=B) tanl (@ —0b) a—b a—b (a— b)?
tan 27 27 ot 5();)4“"

Multiplying both numerator and denominator on the right by 2r and
making 7 infinite, we have
tany (A+B) _a+b
tani (4 —B) a—b’
(@) Area of a Triangle. As a final example we will deduce Iero’s
formula for the area of a plane triangle from Lhuillier’s {ormula for
the spherical excess.
Denote o’ + b + ¢’ by 25', then 8" = s/r, s’ — o’ = (s — a)/r,
s’ — b = (s — b)/r, etc., and we have from Lhuillier’s formula

Ly B

the law of tangents for planc triangles.

8 s—a  (s—a) (_13 (s—b) ——)_s_c“ (s— c)-‘w—_
\/ 2'+3(27)*+)< 3(2ry ) 27 3(2 ol (27 +3 (2 f)“‘+)
Multiplying through by 47% gives

r2E . Ji?

PE = 4=

v (s+;;;z+)(s o i oo o oo )
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Now as 7 approaches infinity, E approaches o, r2E remains equal to
the area of the triangle, hence in the limit
PE=T=Vs(s—a)(s—b)(s—c¢)

which is Hero’s formula.

EXERCISE ¢

1. Derive the second of the formulas (12).

2. Derive the third and fourth of the formulas (12) by applying
the first and second to the co-lunar triangle AB'C.

3. Derive the fourth of the formulas (13) by applying the third to
the co-lunar triangle AB'C.

4. Derive the fourth of the formulas (13) by applying the second
to the polar triangle.

5. Show that the area of the co-lunar triangle A’BC, AB'C, ABC’ is
r2(2A — E), r*(2 B — E), r?(2 C — E), respectively, where E is the
spherical excess of the triangle ABC.

6. Prove that

sin(s — @) + sin(s — &) + sin(s — ¢) — sin s = 4 sin %a sin }b sin 1c.
7. I S, S4, S, Sc denote half the sums of the angles of a triangle
and its three co-lunars respectively, prove that

S+S,+Ss+ Sc =3

8. If E, 4, Ep, Ec¢ denote the spherical excesses of a triangle and
its three co-lunars respectively, show that £+ E, 4+ FEp + E¢c = 2 7,
and hence that the sum of the arca of these triangles is equal to half
the arca of the sphere.

9. Deduce the double formula for plane triangles from Delambre’s
formulas for spherical triangles.

10. Deduce the half-angle formulas for plane triangles from the
corresponding formulas for spherical triangles.

11. From the formula cosc¢ = cosa cos b for right spherical tri-
angles deduce the formula ¢2 = a® 4+ b? for plane right triangles.

12. If K, K, Kp, K¢ denote the arcual radii of a triangle and its
three co-lunars, show that tan K cot K 4 cot Kpcot K¢ = cos?S.



CHAPTER IV
SOLUTION OF OBLIQUE SPHERICAL TRIANGLES

37. Preliminary Observations. In Art. 23 it was shown that
every spherical triangle may be solved by the method of right triangles.
Again every spherical triangle may be solved by means of the funda-
mental relations of Art. 27, as was shown in Art. 29. The purpose of
the present chapter is to present the most approved methods, which,
though based on apparently more complicated formulas, require, as
a rule, the least possible amount of computation, and are, therefore,
commonly employed by computers.

The computer will do well to observe the following points:

(a) The arrangement of the work should be orderly and methodi-
cal. A complete schedule for the tabular work should be made out
before the tables are used (Pl Trig., Art. 70).

() It will be well to letter the given parts as in the illustrations
which follow. Thus if the given parts are two sides and the included
angle, call the larger of the two sides g, the other b, and the angle C.
This is easier. than to rewrite the formulas so as to involve other
letters.

(¢) Remember that a small angle cannot be accurately found from
its cosine, nor an angle near go° from its sine. (Pl. Trig., Art. 21.)
Usually there is a choice of formulas which will enable us to avoid
any inaccuracies arising from this source.

(d) Remember also that the answer cannot be more accurate than
the least accurate of the given parts. It is a false show of accuracy
to compute the answer to the nearest sccond when one or more of the
given parts have a lesser accuracy. (Pl Trig., Art. 44, 19.)

(¢) No result can be relied upon unless it has been checked. When
the answer is given, that may be looked upon as a check, in all other
cases the computer must provide a check of his own.

38. Case I. Given the Three Sides, a, b, c.

Solution.

1. To find 4, B, C. Use the half-angle formulas (8).

2. Check. Use the law of sines.

Note. 1f one angle only is required it is better to use (6) or (7).

51
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EXAMPLE.
Given v To find
a = 123° 34’ 45", A = 121° 32" 41",
b= 75°56'33", " B = 8252 53",
¢ = 105° 00’ 18”. C = 9851 55",
Solution. Fig. 30.
1. To find 4, B, and C.

34 = tank 1B = tank __tank |
tang 4 sin (s — a)’ tan3 B sin (s — b)’ tanyC= sin (s-—c)
tank=\/5in s—a)sm(s—b)sm(s—r) s=a+b_+_c.

sin s 2
a = 123° 34’ 45" log sin (s — a) = 9.68122
b= 75° 5()’ 33" log sin (s — ) = 9.98751
c= 19_5_ oo’ 18" log sin (s — ¢) = 9.86504
25 = 304° 31’ 36" cologsins = 0.33215
log tan% = 9.80082
s = 152° 15" 48" log tan k = 9.93341
s—a= 28° 41’ 03”
s—b= 76° 19’ 15" log tan} 4 = o.25219
s—c= 47 15" 30" log tan 3 B = 9.94590
25 = 152° 15’ 48" (check) log tan 3 C = 0.06747
1 A = 60° 40" 20.7" A = 121°32'41",
3 B = 41° 20’ 26.4" B = 82°352" 53",
3 C = 49°25" 57.7" C= ¢8°s1'55".
2. Check.

sina sin b sin ¢

sind sinB  sinC

log sin @ = g.92071 logsin b = 9.9868c logsin ¢ = 9.98493
logsin 4 = 9.03056 logsin B = 9.99664 log sin C = 9.99478
9.99015 9.99016 9.99015

EXERCISE 10
Solve the following oblique triangles:

. Given a = 72° 16", b = 80°44/, ¢ = 41°18".
Ans. 4 =173°38, B=96°12/, C=41°¢40.
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2. Given a = 109° 45', b = 73°56', ¢ = 54° 32'.
3. Given @ = 105°06.8, b = 93° 39.9", ¢ = 50° 20.3".
Ans. A = 106° 38.0', B = 82°04.4", C = 49°49.2".
4. Given a = 27°43.8', b = 49° 36.8', ¢ = 55° 19.7".
5. Given @ = 120° 22" 40" b = 111° 34" 27", c = 90° 28’ 35"
Ans. A = 126° 18’ 42", B = 119° 42" 08",C = 111° 51" 42",
6. Given a = 20° 45’ 23", b = 55° 56" 56", ¢ = 67° 25" 54"".
7. Given @ = 131°35 04", b = 108° 30" 14", ¢ = 84° 46’ 34,
A = 132° 14’ 21”. Find B and C.
8. Given a = 35° 30" 24", b = 38° 57" 12", c = 56° 15" 43"".
Find B = 47° 37" 21"’
39. Case II. Given the Three Angles, 4, B, C.
Solution.
1. To find a, b, c. Use the half-angle formula (11).
2. Check. Use the law of sincs.
Note. 1f one side only is required it is better to use (9) or (10).

ExaAMPLE.
Given To find
A = 121°32" 41", a = 123° 34’ 46",
B = 82°5253", b= 75°50" 32",
C= 9851 55" ¢ = 105° 00’ 18",
Solution.

1. To find a, b, c.
tan 3 ¢ = tan K cos (S — A), tan 3 b = tan K cos (S — B),
tan 3 ¢ = tan K cos (S — (),

tan K = \/ o5 (S — A) éOS_(ggi_bB)_cos — A+ f +C.
A = 121° 32" 41"

B = 8°52' 53" S—4
C = o8 51"s55" S—B= 6845 515

S—C

S

5= o517 7
S = 151° 38 44.5"
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log (— cosS) = 9.94450

log cos (§ — 4) = 9.93709 colog cos (S — 4) = o0.06291

log cos (S — B) = 9.55896 colog cos (S — B) = 0.44104

log cos (§ — C) = 9.78166 colog cos (S — C) = 0.21834

log tan?K = 0.66679

logtan K = 0.33340 log tan K = 0.33340
logtank e = 0.27049 3 a=061°47 23"
logtan b = 9.89236 2 b= 37°58 16"
logtan % ¢ = o.11506 3¢ = 352°30" 09"

a = 123° 34" 46", b= 75°56" 32", ¢ = 105° 00" 18".
2. Check.

sin @ sinb ~ sinc
logsin A = 9.93056 logsin B = 9.99664 log sin C = 9.99478
logsin @ = ¢.02071  logsin b = 9.98680 logsin ¢ = 9.08493
0.00985 0.00084 0.00985
Note. Since the sum of the angles of a spherical triangle is always
between 180° and 540°, S is necessarily between go® and 270° hence,
cos S is always negative and —cos S positive.

|

EXERCISE 11
Solve the following triangles:
1. Given A = 74° 40/, B = 67°30', C = 49° 50'.
Ans. a = 4330, b=41°21, ¢ = 33°07.
2. Given A = 125° 54', B = 55°35’, C = 45° 05"
3. Given A = 46° 50.3", B = 122° 32.6, C = 139° 00.3’.
Ans. a = 59°27.4', b=117°00.2", ¢ = 123° 200",
4. Given A = 47° 34.6', B = 74° 54.7', C = 77° 24.5'.
5. Given 4 = 59° 55’ 10”, B = 85° 36’ 50", C = 59° 55" 10”.
Ans. a=51°17 31,0 = 64° 02’ 47", ¢ = 51° 17" 31",
6. Given 4 = 109° 35’ 56", B = 111° 23’ 06", C = 86° 49’ 19”".
7. Given 4 = 15° 38’ 06”, B = 16° 06’ 22", C = 159° 44 26”.
Find b. Ans. b= 52°05 54”.
8. Given 4 = 50°45' 23", B = 58° 01’ 10", C = 87° 17" 00",
Find C.
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40. Case III. Given Two Sides and the Included Angle,
a, b, C.
Solution.

1. Tofind 4 and B. First find 2 (4 + B) and § (4 — B) by the
first two of Napier’s proportions (Art. 33), then

A=3A4+B)+3(A4—-B), B=3(4+B)—}(4-B).

2. To find ¢. Use either one of Delambre’s proportions (Art. 32).
3. Check. Use the law of sines (Art. 24).

EXAMPLE.
Given To find
a = 110° 30" 24", A= 63°57" 39",
b= 36° 471 36”, B = 350 041 03//’
C = 135°12" 12". ¢ = 132° 44’ 08",
Solution. Fig. 0.
1. To find 4 and B.
cos 1 (a
tani (4 + B) = Co:f(a_*_b;cotfc
_ glg : (e—b)
tani (4 — B) sinl ( ¥ b) cot 3 C.

3(a—b) = 36°51"24", 3 (@+b) = 73° 39" 00", 3 C = 67° 36" 06"

log cos 7 (@ —08) = 9.90316 log sin % (¢ — b) = 9.77802

colog cos} (¢ +b) = o.55052 cologsin3 (a + b) = 0.01793

log cot 3 C = 9.61504 log cot 3 C = 0.61504

log tan% (4 4+ B) = 0.06872 log tan § (4— B) = 9.41099
1A+ B) = 49°30 51" 3 (A—B) = 14° 26' 48"

‘1 — 630 571 39H. ”n
2. To find ¢.

cos} (a —

sin (4 4+ B) COS%C

cosdc=
log cos (@ — b) = 9.90316
colog sin 3 (A+B) = 0.11886
log cos % C 9.58098
logcos % ¢ = 9.60300

B = 35°04’ 03",

3. Check.

sing _ sind _ sin¢
sind _ sinB_ sinC

log sin @ = 9.97157
log sin 4 = 9.95352
0.01805
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log sin & = 9.77738

3¢ = 66° 22" 0g"” log sin B = 9.75932

¢ = 132° 44’ 08" 0.01806

log sin ¢ = 9.86598

log sin C = 9.84704

o0.01804
We might have found ¢ from the third or fourth of Napier’s propor-
tions but this would have required us to look up one more logarithm.

EXERCISE 12
Solve the following oblique triangles:
1. Given a = 140° 38’, b = 130° 28', C = 150° 34".
Ans. A =161°47', B = 157°58, ¢ = 85°20.
2. Given ¢ = 103° 44", b = 64° 12, C = ¢98° 33'.
3. Given g = 156°12.2', b = 112° 48.6/, (' = 76° 32.4 .
Ans. A = 154°04.1', B = 87°27.1", ¢ = 63°48.8".
4. Given a = 27°45.5", b = 22° 56.7', C = 156° 15.9".
5. Given a = 88° 12’ 20”, b = 124° 07" 17", C = 50° 02’ 02"
Ans. A = 63°15' 10", B = 132°17" 50", ¢ = 50° 04’ 25"".
6. Givena = 111°11" 12", b = 137° 56’ 56", C = 23° 15" 48"
9. Given b = 68° 12’ 58", ¢ = 80° 14" 41”7, A = 17° 20’ 54"
Ans. B = 52°05" 54", C = 123° 07" 37", a = 20° 32’ 33"".
8. Given a = 56° 56’ 56", ¢ = 156° 56’ 56", B = 94° 45" 45"'.
41. Case IV. Given Two Angles and the Included Side,
A, B, c.
Solution.
1. To find @ and b. First find % (a + ) and % (a — b) by the last
two of Napier’s proportions (Art. 33), then
a=3@+b+3@—b), b=3@+b)—3@—20).
2. To find ¢. Use either one of Delambre’s proportions (Art. 32).
3. Check. Use the law of sines.

ExAMPLE.
Given To find
A= 6357 3911, @ = 110° 301 2311,
B = 35°04’ 03", b= 36°47" 37",
¢ = 132° 44’ 08" C = 135°12" 15",
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Solution.

1. To find @ and b.

1 _cos} (4 —B)
tani (e +b) = sl A FB)
sin 3 (1 — B)
sin 3 (4 + B)

1(A—B)=14"26"48", } (A+ B) = 49° 30" 51", 3 ¢ = 66° 22" 04"

tan .

tan (e —0) = tan }c.

log cos 3 (4 — B) = 9.98605 log sin § (4 — B) = 9.39702
colog cos 3 (4 + B) = 0.18758 colog sin ¥ (4 + B) = 0.11887
log tan 3 ¢ = 0.35896 logtanj ¢ = 0.35806
logtan (¢ + ) = o.53259 logtan} (@ — b) = 9.87485
1@+0b) = 73°39" 00" 3 (@ — b) = 36° 51" 23"
a = 110° 30 23"". b=36°47"37".
2. To find C. 3. Check.

sin 3 (1 — B) sinAd _sinB _ sinC

s3C=Gnt@—0) m2c sina = sinb sinc’
log sin 3 (4 — B) = 9.39702 logsin4d = 9.95352
cologsiny (a — b) = o.22199 logsina = 9.97157
log sin.} ¢ = 0.96106 5:08.}95
log cos 3 C = 9.58097 log sin B = 9.75032
3C = 67°36"07.7” logsinb = ¢.77738
C = 135°12" 15" 0.08104
log sin C = 9.84703
logsinc = 9.86598
9-98195

EXERCISE 13
Solve the following triangles:
1. Given 4 = 67°30’, B = 45° 50/, ¢ = 74° 20'.
Ans. a=63°15", b= 53°46, C = 52°27.
2. Given 4 = 126° 45’, B = 49° 52’, ¢ = 80° or’.
3. Given B = 140° 43.2", C = 100° 04.6/, @ = 60° 43.6’.
Ans. b= 145°55.2', ¢ = 119° 22.6’, 4 = 80° 14.8".
4. Given C = 139° 25.8/, 4 = 13° 56.9, b = 29° 00.8'.
5. Given 4 = 153° 17’ 06”, B = 78° 43 32", ¢ = 86° 15’ 15".
Ans. a = 88°12' 1¢”,b = 78° 15" 41”7, C = 152° 43" 52",
6. Given a = 50° 34’ 56", B = 124° 10’ 10", C = 83° 25’ 25"".
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42, Case V. Given Two Sides and the Angle Opposite One
of Them, a, b, 4.

In this case there may be two solutions (see Art. 11).

1. To find B. Use the law of sines, sin B = gg_b_sm_A

sing
Since B is found from its sine it will in general have two values whose
. . sinbsin A4 _ . . .

sum is 180°. sin B = %ﬂ% =1, according as sin  sin 4 = sin q,
hence B has two values, one value (9o°), or no real value, according as
sin b sin A = sina.

2. To find C. From the sccond of Napier’s proportions

sin } (@ — b)
sin (e + b)
Since C is less than 180°% tan 3 C must be positive. Now a4+ b is
always less than 360°, therefore sin 3 (¢ + &) is always positive,
hence in order that tan 3 ¢ may be posltlvc sin (a — b) and cot

1 (4 — B) must have llke signs. Now 3 (¢ — b) and 3 2 (4 — B) are
each numerically less than ¢o°, hence in order that sin ¥ (¢ — b) and
cot } (1 —B) may have like signs, 3 (@ — 8) and } (1 — B) and
consequently a — b and 4 — B must have like signs. If both values
of B satisfy this condition there are two solutions, if only one value
of B satisfies this condition there is only one solution, if neither
value of B satisfies this condition there is no solution.

3. To find ¢. From the fourth of Napier’s proportions

1 sin (4 + B)
tanzc= sin (4 — B)

taniC= cot3 (4 — B).

tani (e — b).

4. Check. Use the law of sines, or any other formula involving
B, C, and ¢, which has not been previously used.

The foregoing considerations regarding the number of admissible
solutions may be summed up into the following:

Rule.

a. If sina < sin b sin A, there is no solution.

b. If sin a = sin b sin A, there is one solution, B = 90°.

c. If stn a > sin b sin A, each of the two values of B which gives
A — B and a — b like signs yrelds a solution.
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ExXAMPLE.
Given. To find.
a= 62°15, B = 62° 25/,
b=103°19, A C = 155°43,
4 = 53°43". ¢ = 153° 10/,
B ’ o ’
B’ = 117° 35/,
5 C' = 59°0¥’,
Fig. 41. C' = 70°27.
Solution.
1. To find B.
log sinb = 9.98816
. sin b sin 4 log s A = 9.99639
sinB = ————- colog sin @ = 0.05306
sina . -
log sin B = 9.94761
B=62°25" or B =117°35%.
2. To find C. 3. To find c.
1 sin 3 (a—b) 104 1 sing(A4+B) 40
1Cc= 9111,,((1-!-1)) cot 3(A—B). tanlc= din k(4= B)tan.,(a b).
3at+b)= 82°47, 3(4+B)= 58°04, (1+B)= 8537,
$(a—b)=—20"32', 3(A—B)=— 4°21", }(A—B)=-—31°50".

Since the signs of a — b and A — B arc alike for both values of B
there are two solutions.

logsin} (¢ — b) = 9.54500m log sin} (1 + B) = 9.92874
cologsin} (e +b8) = 0.00345 colog sin} ({1 — B) = 1.120035%
log cot 3(4—B) = 1.11880m logtan } (¢ — b) = 9.57351%
log cot § (A —B’) = o.205347m log sin 3 (1 + B') = 9.99875
log tan 1 C = 0.60725 colog sin 3 (A — B’) = o0.27660n
log tan  C'= 9.75379 log tan } ¢ = 0.62230
logtani ¢’ = (.84886
iC = 77°515. $c = 76°34.8.
3C = 29°33.9'". 3d = 35°135"
C = 155°43.0. ¢ =153°09.6.
C' = 59°07.8. ¢ = 70°27.0.
4. Check.
sinb _ sin ¢ _sin ¢
sinB_ sinC sinC’

log sin & = ¢.98816
log sin B = 9.94761
0.04055

log sin ¢ = 9.65466
log sin C= 9.61411
0.04055

log sin ¢’ = g.97421
log sin C’= 9.93366
0.04055
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EXERCISE 14

Solve the following triangles:
1. @ = 56°40, b = 30° 50", 4 = 103° 40".
Ans. B = 36°36', C = 52°00, ¢ =42°3¢".
2. b= 4445, c = 49° 35, B = 58°56". (Two solutions.)
3. a = 148° 344", b = 142° 11.6, A = 153° 17.6".
Ans. B = 31°53.7, C = 6°19.6', c = 7°18.3;
B’ = 148°06.3', C' = 130° 21.4/, ¢’ = 62° 08.8".
4. a=41°25.8, b=19°57.9", A=062°09.5". (One solution.)
5. @ = 67°12" 20", b = 48° 45’ 40", B = 42° 20’ 30"
Ans. A 55°30 57", C = 116° 34’ 18", = ¢3° o8’ 10”;
A" = 124° 20’ 0311’ = 24° 32/ 1511’ J = 270 371 20",
6. a=38°10"10", b=24°50" 45", B=65°25"00”. (No solution.)
43. Case VI. Given Two Angles and the Side Opposite One
of Them, .1, B, a.
As in Case V so here there may be two solutions. (See Art. 11.)
1. To find 6. Use the law of sines,
_sin Bsina,
sin A
2. To find ¢. From the fourth of Napier’s proportions,
sind (1~ B)
sing (4 4+ B)
3. To find C. From the sccond of Napier’s proportions,
Ho |
:;‘%E;‘J_lz; tan} (4 — B).

in b

cotd c= col? (a—d).

cot3 C =

4. Check. Use the law of sines, or any other formula involving
b, ¢, and C, which has not been previously used.

To determine the number of solutions we have the following rule
which is based upon a process of reasoning exactly analogous to that
employed in establishing the corresponding rule in Casc V.

Rule.

a. If sin A < sin B sin q, there is no solution.

b. If sin A = sin B sin a, there is one solution, b = ¢o°.

¢. If sin 4 > sin Bsin a, cach of the iwo values of b, which gives
to ¢ — b and 4 — B like signs, yields a solution.
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ExAMPLE.
Given
4 = 45° 30,
B = 37° 22,
a = 40° 30"
Solution.
1. To find b.

log sin B = 9.78312
log sin e = 9.81343
colog sin 4 = 0.14670
log sin b = 9.74331
b= 33°37.5
b = 146° 22.5'

To find
b= 33°38,
¢= 59°15,
C = 109° 37'.

3 (4 + B) = 41° 26

3(A—=B)= 4o
3 @+ b) = 37°00.8
1(@—0b) = 3°29.2'
3@+ ¥) = 93° 29.2

3 (@ —b) =—52°48.2

A — B and a — b’ have unlike signs, hence b’ does not yield a

solution.
2. To find c.
log sin } (4 — B) = 8.85075
colog sin } (4 + B) = 0.17031
log cot 3 (@ — b) = 1.21507
log cot & ¢ = 0.24513
36=129°37.6'

¢ = 59°15.2"
4. Check.
sinB _sinC
siny  sinc

log sin B = 9.78312
logsinb = g.74331

3. TofindC.
log sin} (@ + &) = 9.78060
cologsini (e — b) = 1.21588
logtan3 (4 — B) = 8.85185
log cot } C = 9.84833
3C = 54°4845
C = 109° 36.9’
log sin C = 9.97403
log sin¢ = 9.93421

0.03381 o.o338é
EXERCISE 15
Solve the following triangles:
1. A =36°20", B=406°30, a=42°12.
Ans. b = 55°19/, ¢ = 81°19), = 119° 19’}
¥ =124°51, ¢ =162°38, C'=164°44"
2. A =60°32", B=25°56', a=35°18. (One solution.)

3. A =73°11.3, B=61°18.2, a = 46° 45.5".

Amns.

I

4. A

b = 41°52.6', ¢ = 41°35.1,

C = 60° 42.8'.

103° 56.9', B=79° 35.8', @ =127°45.0". (Two solutions.)
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5. B = 123°40 20", C = 159°43 22", ¢ = 159° 50’ 05"
Ans. b = 55°52’ 30", @ =137°21" 19", A = 137°04 26"

/

b = 124°07" 30", @' = 65°39 44", A’ = 113°39  16”.

6. A = 70°45 10", B = 119° 50’ 56", = 79°45 02””. (No
solution.)

44. To Find the Area of a Spherical Triangle.

ExAMPLE.

Given a = 124° 12" 31", b = 54°18' 16", ¢ = 97°12' 25”. Find
the spherical excess, and hence the area of the triangle, the radius of
the sphere being 3959 miles.

Solution. By Art. 34 we have

. . 27170
tanl E=V'tanls tan}(s—a)tan} (s—b)tani (s—¢), 1 = zrfgf’ .
3a=02°00"15.5" logtanj s = 0.41426
25 = 27°09' 08" log tan 3 (s — a) = 9.07809
3¢ =48°36"12.5" logtan} (s — b) = 9.95105
s =137° 51’ 36” log tan 3 (s — ¢) = 9.56871
35 = 68°55 48" log tan? } E = g.o1211
2 (s—a)= 0°4¢ ' 1 1E= 6
2 49" 32.5 og tan 3 £ = g.50605
1(s — b) = 41° 40" 40" 1 1° = 17° 40" 45"
36— ¢) = 20° 19’ 35.5" E° = 71° o7’ 00"
(check) 68° 55" 48"

log R = 3.59759
log R? = 7.19518
logm = 0.49715
log E° = 1.85197
colog 180° = 7.74473
log T = 7.28003

T = 19455 X 10° square miles.

46. Applications to Geometry.

ExXERCISE 16
Right Spherical Triangles
1. The hypotenuse of an isosceles right spherical triangle is 60°.
Find the length of the equal sides. Ans.  45°

2. Find the relations between each two of the three distinct parts of
an isosceles right spherical triangle. Ans. cos ¢ = cos?e = cot?A.
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3. Show that no isosceles right spherical triangle can have its
hypotenuse greater than go° nor its acute angle less than 45°.

4. Find the altitude and angle of an equilateral spherical triangle
whose side is 60°. Ans. Altitude = 54° 44", Angle = 70° 32".

5. If a is the side, 4 the angle, and p the altitude of an equilateral

spherical triangle, show that sin}asin} 4 =%, cosp = —5—-

6. The side of a spherical square (a spherical quadrilateral having
four equal sides and four equal angles) is 73° 41’, find the angle and
length of a diagonal.

Ans. Angle = 118° 04.5, Diagonal 106° 16’.

7. The side of a regular spherical polygon (a spherical polygon
having » equal sides and # equal angles) is a. Find the angle 4 of the
polygon, the perpendicular p from the center of the polygon to one
of the sides, and the distance r from the center to one of the vertices
of the polygon.

n 1
Ans. sinj A= S%%S’;%l) , sinp=tan} acot (r/n), sinr= Sislin(:]%—) .
8. Find the perimeter of the polygon (Problem 7) when p = ¢o°.
. Ans. 2.
9. Compute the dihedral angles of a regular tetrahedron. Of a
regular dodecahedron. Ans. 70° 31" 44", 116° 33" 54"
Suggestion. With a vertex of the polyhedron as a center describe
a sphere. The points in which the threc edges proceeding from the
vertex intersect the sphere determine an equilateral spherical triangle
the sides of which are known.
10. Compute the dihedral angles of a regular octahedron. Of a
regular icosahedron. Ans. 109° 28" 16", 138° 11" 23",

EXERCISE 17
Oblique Spherical Triangles
1. The three face angles of a trihedral angle are BOC = 84° 24/,
COA = 72°18', AOB = 60° 18'. Find the dihedral angles.
Ans. OA = 93° 40, OB = 72°48’, OC = 60° 36'.
2. Two planes intersect at an angle of 58° 40’. From a point of
their line of intersection two lines are drawn, one in each plane,
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making the angles 42° 30’ and 64° 24’ with the line of intersection.
Find the angle which the lines thus drawn make with each other.
Ans. 50° 33,

3. The great pyramid of Gizeh has a square for its base, and the
angle between two edges at the vertex measures 96° or.2’. Find the
angle which each face makes with the horizon. Ans. 51°51.

4. A ten-sided pavilion is covered by a pyramidal roof. Two
consccutive hips of the roof make an angle of 30°. Find the angle
between two consecutive faces of the roof. Ans. 150°53'.

5. The opposite faces of an obelisk are inclined at an angle of 16°.
Find the face angles at the base of the obelisk and the angle between
two adjacent faces. Ans. 82°04.6'; 91° 06.6'.

6. The ridges of two gable roofs meet at right angles. The slope
of each roof is 60°. Find the angle between the planes of the two
roofs, and the angle the valley makes with each ridge.

Ans.  104° 26.0’, 63° 26.1'.

7. A mason cuts a stone in the shape of a pyramid with a regular
hexagonal base. The edges are inclined at an angle of 30° with the
base. Find the angle between two adjacent lateral faces, and the
inclination of the faces to the base.

Ans. 149° 18.6", 39°13.9".

8. If @, B, v arc the arcs joining any point in a trirectangular
triangle to the vertices of the triangle, show that

cos? a + cos® B+ cos® ¥ = 1.

9. An oblique parallelopiped has the threc edges 04 = 2.509,
AB = 3.65,0C = 7.21, and the angles AOB = 72° 16/, BOC = 80° 44/,
CO4 = 41°18’. Find its volume. Ans.  21.30.

46. Application to Geography and Navigation.

EXERCISE 18

1. Find the shortest distance measured along a great circle between
New York, lat. 40° 42" 44”” N., long. 74° 0o’ 24” W., and San Fran-
cisco, lat. 37°47" 55”7 N., long. 122°24" 32”” W., the earth being
considered a perfect sphere, radius 3959 miles. Ans. 2564 miles.

2. Find the arca of a spherical triangle on the earth’s surface
(r = 3959 miles) whose spherical excess is 1°.

Ans. 273,575 square miles.
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3. Compare the shortest distances in degrees of San Francisco, lat.
37° 47" 55" N., long. 122° 24’ 32" W., and Seattle, lat. 47° 35" 54" N,
long. 122° 19’ 59" W., from Tokio, lat. 35° 39’ 18" N., long. 139° 44’
30" E.

4. Find the distance in degrees and the bearing of Rio Janeiro,
lat. 22° 55’ S., long. 43° o9’ W., from Cape of Good Hope, lat. 34° 22’
S., long. 18° 30’ E.

Ans. Distance 54° 29, Bearing S. 84° 45’ W.

5. Find the first and final courses from San Francisco, lat. 37° 47
55" N., long. 122° 24" 32" W, to Yokohama, lat. 35° 20" 52" N., long.
139° 38" 41" E. Ans. N.56°s51" W., S.54° 17" W.

6. A ship sails on an arc of a great circle a distance of 4150 miles
from lat. 17° N., long. 130° W., the initial course being S. 54° 20’ W.
Taking 1° = 69§ miles, what is the latitude and longitude of its final
position. Ans. Lat. 19°41'S., long. 178° 21" W.

7. A vessel sails from Boston, lat. 42° 21" N, long. 71° 03’ W., to
Cape Town, lat. 33° 50’ S., long. 18° 28’ E. Find at what longitude
the ship crosses the Equator and its course at this point.

Ans. Long. 17° 48’ W, course S. 41° 19’ E.

8. Find the'distance at which a vessel sailing from Seattle to
Tokio will cross the 18oth meridian and its latitude at the time of
crossing.  (See Problem 3.)

9. Find the latitude and longitude of the place where a ship sailing
from Cape of Good Hope to Rio Janeiro crosses the meridian at right
angles.  (See Problem 4.)

Ans. Lat. 34°43'S., long. ¢° 15’ E.

1o. Find the longitude and latitude of the place where a ship
sailing from San Francisco to Yokohama crosses the meridian at right
angles. (Sce Problem s.)

11. The continent of Asia has nearly the shape of an equilateral
triangle, each side being approximately 5500 miles. TFind the area
of the triangle (@) regarded as a planc triangle, (b) regarded as a
spherical triangle, the radius of the earth being assumed 3960 miles.

Ans. 13,008,500 square miles; 17,228,400 square miles.
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47. Applications from Astronomy.

EXERCISE 19

(For definitions of terms consult any dictionary or textbook on
astronomy.)

1. How many seconds does it take for a star whose declination
is 4+64° 04’ to cross the field of a telescope, the diameter of the field
being 36'? Amns. 329 seconds.

2. Find the approximate time of sunrise in Seattle, lat. +47° 39/,
on Jan. 15, 1913. Suggestion. Look up the sun’s declination.

Ans. 7% go.5™ AM. local apparent time.

3. Find the length of the longest day at Seattle, lat. +47° 39"
Suggestion. When the sun is at its summer solstice its declination
is 23° 27",

4. The moon’s most northerly declination during this Saros
occurred on March 19, 1913, and was 28° 44" 10”. Find approxi-
mately how long it was below the horizon at San Francisco, lat. 37°
48" 24", Ans. 8" 56™.

5. The zenith distance of the sun was observed to be 45° 26" the
afternoon of a day when its declination was 4-20° 32”.  If the latitude
of the place was +37° 10’, what was the local apparent time?

6. The azimuth of the sun was measured and found to be 10° 14.2"
and its zenith distance 25° 12.1" at a time when its declination was
+21° 39.2’, find the latitude of the place.

Ans. 46° 34.1'.

7. In Problem 6 find the local apparent time.

Ans. o zo™ 13%

8. At 1* 15™ 16.1° local apparent time the altitude of the sun was
found to be 68° 21" 46" at a time when its declination was 4 22° 41" 30”.
Find the latitude of the place.

9. In Problem 8 find the azimuth of the sun.

10. The altitude of the sun was measured and found to be 40° 18’
25" at a place whose latitude is 47° 39" 06” at 2* 10™ 17.8° local
apparent time. Find the sun’s declination.

Ans. + 6° 25" 53”.

11. The northeastern end of the canal Phison on Mars is in Martian
latitude o° 03’ N. and longitude 335° 10’ and the southwestern end
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is in latitude 40° 08’ S. and longitude 296° 58’. Find the length of
Phison, the diameter of Mars being 4200 miles.
Ans. 1946.6 miles.

12. The declination of Algol is +40° 37’; find the azimuth of the
star when setting at Ann Arbor, lat. +42° 17",

13. The declination of Aldebaran is +16° 20.1’; find the azimuth
of the star when setting at Seattle, lat. 47° 39.1'.

Ans. 114° 40.8'.

14. The declination of Procyon is +5° 26’ 55”; find the azimuth
of the star when setting at Chicago, lat. 41° 50’ o1”’.

15. The declination of 43H Cephei is now (1913) 85°47’. Find
its azimuth at Washington, D. C., lat. 38° 54/, 3* 10™ after its meri-
dian passage.

16. The declination of Polaris is now (1913) 88° 50’ 38”. Find
its azimuth at Seattle, lat. 47° 39’ 06", 5* o1™ 20* after its meridian
passage. Ans. 178° 19" 50",

17. The right ascension and declination of Regulus are
a =10" 03™ 44.4°, 6 =+ 12° 23" 34”. On May 13, 1913, the moon’s
right ascension and declination were a = ¢* 58" 37.3%, 6 =+15° 32’
44”. Find the angular distance between the moon’s center and
Regulus. Ans. 3° 23" 20",

18. The obliquity of the ecliptic is now (1913) 23° 27’ 02”’. Find
the celestial latitude and longitude of a star for which a=3"15™ 20",
6 =+ 36° 17" 50"

Ans. B =4 17° 33" 19.7”', N = 56° 11’ 24.5".

19. What is the greatest altitude of a star on the equator in the
meridian of Washington, lat. 438° 53’ 39”2 Ans. 51°006' 217,
























